| [1] | Kalman R E. Controllablity of linear dynamical systems. Contrib Diff Equ, 1963, 1: 190-213 | | [2] | Cui J, Yan L T. Existence results for impulsive neutral second-order stochastic evolution matrixs with nonlocal conditions. Math Comput Model, 2013, 57: 2378-2387 | | [3] | Zeng B, Liu Z H. Existence results for impulsive feedback control systems. Nonlinear Analysis: Hybrid Systems, 2019, 33: 1-16 | | [4] | Li F, Wang H W. An existence result for nonlocal impulsive second-order cauchy problems with finite delay. Abstr Appl Anal, 2013: Artide ID 724854 | | [5] | Gao C X, Li K Z, Feng E M, et al. Nonlinear impulsive system of fed-batch culture in fermentative production and its properties. Chaos Soliton Fract, 2006, 28(1): 271-277 | | [6] | Jin L, Liu J H, Xiao T J. Nonlocal impulsive problems for nonlinear differential matrixs in Banach spaces. Math Comput Model, 2009, 49: 798-804 | | [7] | Hale J K, Kato J. Phase space for retarded matrixs with infinite delay. Funkc Ekvacioj-Ser I, 1978, 21(1): 11-41 | | [8] | Hino Y, Murakami S, Naito T. Functional Differential Equations with Infinite Delay. New York: Springer Verlag, 1991 | | [9] | Arora S, Mohan M T, Dabas J. Approximate controllability of the non-autonomous impulsive evolution matrix with state-dependent delay in Banach spaces. Nonlinear Analysis: Hybrid Systems, 2021, 39: 100989 | | [10] | Zhou Y, Suganya S, Mallika A M, et al. Approximate controllability of impulsive fractional integro-differential matrix with state-dependent delay in Hilbert spaces. Ima J Math Control I, 2019, 36(2): 603-622 | | [11] | Shen L J, Sun J T. Approximate controllability of stochastic impulsive functional systems with infinite delay. Automatica, 2012, 48(10): 2705-2709 | | [12] | Chen P Y, Zhang X P, Li Y X. Approximate controllability of non-autonomous evolution system with nonlocal conditions. J Dyn Control Syst, 2020, 26(6): 1-16 | | [13] | Mokkedem F Z, Fu X L. Approximate controllability of a semilinear neutral evolution system with infinite delay. Int J Robust Nonlin, 2017, 27(7): 1-25 | | [14] | Naito K. Controllability of semilinear control systems dominated by the linear part. SIAM J Control Optim, 1987, 25: 715-722 | | [15] | 康笑东, 邵勇, 范虹霞. 具有结构阻尼的弹性系统的近似可控性. 武汉大学学报(理学版), 2021, 67(2): 151-157 | | [15] | Kang X D, Shao Y, Fan H X. Approximate controllability of elastic systems with structural damping. Journal of Wuhan University (SCIENCE EDITION), 2021, 67(2): 151-157 | | [16] | Sakthivel R, Anandhi E R, Mahmudov N I. Approximate controllability of second-order systems with state-dependent delay. Numer Func Anal Opt, 2008, 29(11-12): 1347-1362 | | [17] | Arthi G, Park J H, Jung H Y. Existence and controllability results for second-order impulsive stochastic evolution systems with state-dependent delay. Appl Math Comput, 2014, 248: 328-341 | | [18] | Su X F, Fu X L. Approximate controllability of second-order semilinear evolution systems with finite delay. Acta Math Appl Sin-E, 2021, 37(3): 573-589 | | [19] | Travis C C, Webb G F. Compactness, regularity, and uniform continuity properties of strongly continuous cosine families. Houston J Math, 1977, 3(4): 555-567 | | [20] | Travis C C, Webb G F. Second order differential matrixs in Banach space. Nonlinear Equations in Abstract Spaces, 1978, 8(1): 331-361 | | [21] | Curtain R F, Zwart H. An Introduction to Infinite-Dimensional Linear Systems Theory. New York: Springer, 1995 |
|