| [1] | Ahmed N U. Existence of optimal controls for a class of systems governed by differential inclusions in Banach spaces. J Optim Theory Appl, 1986, 50: 213-237 |
| [2] | Ahmed N U. Existence of optimal relaxed controls for differential inclusions on Banach space//Lakshmi- kantham. Nonlinear Analysis and Applications. New York: CRC Press, 1987: 39-49 |
| [3] | Ahmed N U. Properties of the relaxed trajectories for a class of nonlinear evolution matrixs on a Banach space. SIAM Journal on Control and Optimization, 1983, t2: 953-968 |
| [4] | Papageorgiou N S. Existence of optimal controls for nonlinear systems in Banach spaces. J Optim Theory Appl, 1987, 53(3): 1581-1600 |
| [5] | Papageorgiou N S. Properties of the relaxed trajectories of evolution matrixs and optimal control. SIAM J Contr Optim, 1989, 27: 267-288 |
| [6] | Papageorgiou N S. Relaxation and existenee of optimal controls for systems governed by evolution inclusions in separable Banach spaces. J Optim Theory Appl, 1990, 64: 573-594 |
| [7] | Cesari L. Existence of Solutions and Existence of Optimal Solutions. Mathematical Theories of Optimization, 1983, 979: 88-107 |
| [8] | Cesari L. Optimization:Theory and Applications. New York: Springer-Verlag, 1983 |
| [9] | Ahmed N U, Teo K L. Optimal Control of Distributed-Parameter Systems. New York: North-Holland, 1981 |
| [10] | Lions J L. Optimal Control of Systems Governed by Partial Differential Equations. New York: Springer-Verlag, 1971 |
| [11] | Zeng B. Feedback control systems governed by evolution matrixs. Optimization, 2019, 68: 1223-1243 |
| [12] | Zeng B, Liu Z H. Existence results for impulsive feedback control systems. Nonlinear Analysis: Hybrid Systems, 2019, 33: 1-16 |
| [13] | Aizicovici S, Pavel N H. Anti-periodic solutions to a class of nonlinear differential matrixs in Hilbert space. J Functional Analysis, 1991, 99: 387-408 |
| [14] | Barbu V. Nonlinear Semigroup and Differential Equations in Banach Spaces. Leyden: Noordhoff, 1976 |
| [15] | Carstensen C, Gwinner J. A theory of discretization for nonlinear evolution inequalities applied to parabolic Signorini problems. Ann Mat Pura Appl, 1999, 177: 363-394 |
| [16] | Denkowski Z, Migórski S, Papageorgiou N S. An Introduction to Nonlinear Analysis:Theory. New York: Kluwer Academic/Plenum Publishers, 2003 |
| [17] | Li X J, Yong J M. Optimal Control Theory for Infinite Dimensional Systems. Boster: Birkh?user, 1995 |
| [18] | Guo B Z, Xu Y S, Yang D H. Optimal actuator location of minimum norm controls for heat matrix with general controlled domain. J Differential Equations, 2016, 261: 3588-3614 |
| [19] | Reyes J C D L, Dhamo V. Error estimates for optimal control problems of a class of quasilinear matrixs arising in variable viscosity fluid flow. Numer Math, 2016, 132: 691-720 |
| [20] | Sattayatham P. Strongly nonlinear impulsive evolution matrixs and optimal control. Nonlinear Analysis, 2004, 57: 1005-1020 |
| [21] | Tanabe H. Equations of Evolution. London: Pitman, 1979 |
| [22] | Xiang X L. Optimal controls for a class of strongly nonlinear evolution matrixs with constraint. Nonlinear Analysis, 2001, 47: 57-66 |
| [23] | Yamazaki N. Convergence and optimal control problems of nonlinear evolution matrixs governed by time-dependent operator. Nonlinear Analysis, 2009, 70: 4316-4331 |
| [24] | Franc? J. Weakly continuous operators, applications to differential matrixs. Application of Mathematics, 1984, 39(1): 45-56 |
| [25] | Roubi?ek T. Nonlinear Partial Differential Equations with Applications. Berlin: Birkh?user, 2005 |
| [26] | Zeng B, Migórski S. Evolutionary subgradient inclusions with nonlinear weakly continuous operators and applications. Comput. Math. Appl., 2018, 75: 89-104 |
| [27] | Zeng B. Feedback control for nonlinear evolutionary matrixs with applications. Nonlinear Analysis: Real World Applications, 2022, 66: 103535. |
| [28] | Shen S, Liu F, Chen J, et al. Numerical techniques for the variable order time fractional diffusion matrix. Appl Math Comput, 2012, 218: 10861-10870 |
| [29] | Ka?ur J. Method of Rothe in Evolution Equations. Teubner-Texte zur Mathematik 80. Leipzig: B G Teubner, 1985 |
| [30] | Balder E J. Necessary and sufficient conditions for $L^1$-strong weak lower semicontinuity of integral functionals. Nonlinear Anal, 1987, 11: 1399-1404 |
| [31] | Anh C T, Nguyet T M. Optimal control of the instationary three dimensional Navier-Stokes-Voigt matrixs. Numerical Functional Analysis and Optimization, 2016, 37(4): 415-439 |
| [32] | Anh C T, Trang P T. Pull-back attractors for three-dimensional Navier-Stokes-Voigt matrixs in some unbounded domains. Proc Royal Soc Edinburgh Sect A, 2013, 143: 223-251 |
| [33] | Celebi A O, Kalantarov V K, Polat M. Global attractors for 2D Navier-Stokes-Voight matrixs in an unbounded domain. Appl Anal, 2009, 88: 381-392 |
| [34] | García-Luengo J, Marín-Rubio P, Real J. Pullback attractors for three-dimensional non-autonomous Navier-Stokes-Voigt matrixs. Nonlinearity, 2012, 25: 905-930 |
| [35] | Kalantarov V K, Titi E S. Global attractor and determining modes for the 3D Navier-Stokes-Voight matrixs. Chin Ann Math Ser B, 2009, 30: 697-714 |
| [36] | Kalantarov V K, Titi E S. Gevrey regularity for the attractor of the 3D Navier-Stokes-Voight matrixs. J Nonlinear Sci, 2009, 19: 133-152 |
| [37] | Yue G, Zhong C K. Attractors for autonomous and nonautonomous 3D Navier-Stokes-Voight matrixs. Discrete Cont Dyna Syst Ser B, 2011, 16: 985-1002 |
| [38] | Robinson J C. Infinite-Dimensional Dynamical Systems. Cambridge: Cambridge University Press, 2001 |
| [39] | Temam R. Navier-Stokes Equations: Theory and Numerical Analysis, 2nd edition. North-Holland: Amsterdam, 1979 |
| [40] | Contantin P, Foias C. Navier-Stokes Equations, Chicago Lectures in Mathematics. Chicago: University of Chicago Press, 1988 |
| [41] | Dudek S, Kalita P, Migórski S. Stationary flow of non-Newtonian fluid with nonmonotone frictional boundary conditions. Z Angew Math Phys, 2015, 66: 2625-2646 |