| [1] | Benci V, Fortunato D, Masiello A, et al. Solitons and the electromagnetic field. Mathematische Zeitschrift, 1999, 232(1): 73-102 | | [2] | D'Aprile T, Wei J. Layered solutions for a semilinear elliptic system in a ball. Journal of Differential Equations, 2006, 226(1): 269-294 | | [3] | Lions P L. The concentration-compactness principle in the Calculus of Variations. The locally compact case, part 1. Annales De l'Institut Henri Poincaré C, Analyse non linéaire, 1984, 1(2): 109-145 | | [4] | Lions P L. The concentration-compactness principle in the Calculus of Variations. The Locally compact case, part 2. Annales De l'Institut Henri Poincaré C, Analyse non linéaire, 1984, 1: 223-283 | | [5] | Makita P D. Nonradial solutions for the Klein-Gordon-Maxwell equations. Discrete & Continuous Dynamical Systems, 2017, 32(6): 2271-2283 | | [6] | Pomponio A, Azzollini A. On a "zero mass" nonlinear Schr?dinger equation. Advanced Nonlinear Studies, 2007, 7(4): 599-627 | | [7] | Pomponio A, Watanabe T. Ground state solutions for quasilinear scalar field equations arising in nonlinear optics. Nonlinear Differential Equations and Applications NoDEA, 2021, 28: 1-33 | | [8] | Rabinowitz P H. On a class of nonlinear Schr?dinger equations. Z Angew and Math Physis, 1992, 43: 270-291 | | [9] | Ruiz D. The Schr?dinger-Poisson equation under the effect of a nonlinear local term. Journal of Functional Analysis, 2006, 237(2): 655-674 | | [10] | Ruiz D. Semiclassical states for coupled Schr?dinger-Maxwell equations: concentration around a sphere. Mathematical Models and Methods in Applied Sciences, 2005, 15(1): 141-164 | | [11] | Wang Z P, Zhou H S. Sign-changing solutions for the nonlinear Schr?dinger-Poisson system in ${\Bbb R}^{3}$. Calculus of Variatons and Partial Differential Equations, 2015, 52: 927-943 | | [12] | Wu Y H, Ge B. A multiplicity results for the nonhomogeneous Klein-Gordon-Maxwell system in rotationally symmetric bounded domain. J Inequal Appl, 2013, 583: 1-12 |
|