| [1] | Nash Jr J. Non-cooperative games[M]//Essays on Game Theory. Edward Elgar Publishing, 1996: 22-33 |
| [2] | Smith M. Evolution and the Theory of Games. Cambridge: Cambridge University Press, 1982 |
| [3] | Sandholm W H. Population Games and Evolutionary Dynamics. London: MIT Press, 2011 |
| [4] | Yang G H, Yang H. Stability of weakly Pareto-Nash equilibria and Pareto-Nash equilibria for multiobjective population games. Set-Valued and Variational Analysis, 2017, 25(2): 427-439 |
| [5] | Yang G H, Yang H, Song Q Q. Stability of weighted Nash equilibrium for multiobjective population games. The Journal of Nonlinear Sciences and Applications, 2016, 9(6): 4167-4176 |
| [6] | Yang Z, Zhang H Q. Essential stability of cooperative equilibria for population games. Optimization Letters, 2019, 13(7): 1573-1582 |
| [7] | Simon H A. 现代决策理论的基石. 杨砾等译. 北京: 北京经济学院出版社, 1989 |
| [7] | Simon H A. The Cornerstone of Modern Decision Theory. Translated by Yang L, et al. Beijing: Beijing Institute of Economics Press, 1989 |
| [8] | 俞建. 有限理性与博弈论中平衡点集的稳定性. 北京: 科学出版社, 2017 |
| [8] | Yu J. Bounded Rationality and Stability of Equilibrium Set in Game Theory. Beijing: Science Press, 2017 |
| [9] | Qiu X L, Jia W S, Peng, D T. An approximation theorem and generic convergence for equilibrium problems. Journal of Inequalities and Applications, 2018, 30: 1-12 |
| [10] | 丘小玲, 贾文生. 有限理性下变分不等式的逼近定理. 数学物理学报, 2019, 39(4): 730-737 |
| [10] | Qiu X L, Jia W S. Approximation theorem of variational inequality under bounded rationality. Acta Mathematica Scientia, 2019, 39(4): 730-737 |
| [11] | Jia W S, Qiu X L, Peng D T. An approximation theorem for vector equilibrium problems under bounded rationality. Mathematics, 2020, 45: 1-9 |
| [12] | 陈华鑫, 贾文生. 群体博弈的逼近定理及通有收敛性. 数学物理学报, 2021, 41(5): 1566-1573 |
| [12] | Chen H X, Jia W S. Approximation Theorem and General Convergence of Population Games. Acta Mathematica Scientia, 2021, 41(5): 1566-1573 |
| [13] | 牟玉霜, 贾文生. 不连续多目标博弈的逼近定理. 江西师范大学学报(自然科学版), 2022, 46(6): 606-609 |
| [13] | Mou Y H, Jia W S. The approximation theorem for discontinuous multiobjective games. Journal of Jiangxi Normal University (Natural Science), 2022, 46(6): 606-609 |