| [1] | Constantin P, Majda A J, Tabak E. Formation of strong fronts in the 2-D quasigeostrophic thermal active scalar. Nonlinearity, 1994, 7(6): 1495-1533 | | [2] | Held I M, Pierrehumbert R T, Garner S T, Swanson K L. Surface quasi-geostrophic dynamics. J Fluid Mech, 1995, 282: 1-20 | | [3] | Lapeyre G. Surface quasi-geostrophy. Fluids, 2017, 2(1): 7 | | [4] | Majda A J, Bertozzi A L. Vorticity and Incompressible Flow. Cambridge: Cambridge UP, 2002 | | [5] | Castro A, Córdoba D, Gómez-Serrano J. Global Smooth Solutions for the Inviscid SQG Equation. Providence, RI: Amer Math Soc, 2020 | | [6] | Kiselev A, Ryzhik L, Yao Y, Zlato A. Finite time singularity for the modified SQG patch equation. Ann Math, 2016, 184: 909-948 | | [7] | Gravejat P, Smets D. Smooth travelling-wave solutions to the inviscid surface quasigeostrophic equation. Int Math Res Not, 2019, 6: 1744-1757 | | [8] | Godard-Cadillac L. Smooth traveling-wave solutions to the inviscid surface quasi-geostrophic equations. C R Math Acad Sci Paris, 2021, 359: 85-98 | | [9] | Ao W, Dávila J, Pino L D, et al. Travelling and rotating solutions to the generalized inviscid surface quasi-geostrophic equation. Trans Amer Math Soc, 2021, 374(9): 6665-6689 | | [10] | Castro A, Córdoba D, Gómez-Serraon J. Existence and regularity of rotating global solutions for the generalized surface quasi-geostrophic equations. Duke Math J, 2016, 165(5): 935-984 | | [11] | Hassainia Z, Hmidi T. On the V-states for the generalized quasi-geostrophic equations. Commun Math Phys, 2015, 337(1): 321-377 | | [12] | Hassainia Z, Masmoudi W N, Miles H. Global bifurcation of rotating vortex patches. Commun Pure Appl Math, 2020, 73(9): 1933-1980 | | [13] | Buckmaster T, Shkoller S, Vicol V. Nonuniqueness of weak solutions to the SQG equation. Commun Pure Appl Math, 2019, 72(9): 1809-1874 | | [14] | Marchand F. Existence and regularity of weak solutions to the quasi-geostrophic equations in the spaces $L^p$ or $H^{-\frac{1}{2}}$. Commun Math Phys, 2008, 277(1): 45-67 | | [15] | Resnick S. Dynamical Problems in Non-linear Advective Partial Differential Equations. Chicago: University of Chicago, 1995 | | [16] | Cao D, Qin G, Zhan W, Zou C. Existence of traveling asymmetric vortex pairs in an ideal fluid. J Differ Equations, 2023, 351(5): 131-155 | | [17] | Cao D, Qin G, Zhan W, Zou C. On the global classical solutions for the generalized SQG equation. J Funct Anal, 2022, 283(2): 109503 | | [18] | Arnol'd V I. Conditions for Nonlinear Stability of Stationary Plane Curvilinear Flows of an Ideal Fluid// Givental A, Khesin B, Varchenko A, et al. Vladimir I. Arnold - Collected Works. Hedelberg: Springer, 1965: 19-23 | | [19] | Cao D, Lai S, Zhan W. Traveling vortex pairs for 2D incompressible Euler equations. Calc Var Partial Differential Equations, 2021, 60(5): 16 | | [20] | Rockafellar T. Convex Analysis. Princeton, NJ: Princeton Univ Princeton Press, 1970 | | [21] | Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case I. Ann Inst He Poincaré, 1984, 1(2): 109-145 | | [22] | Lieb E H, Loss M. Analysis. Providence, RI: American Mathematical Society, 2001 | | [23] | Burchard A, Guo Y. Compactness via symmetrization. J Funct Anal, 2004, 214: 40-73 |
|