| [1] | Aldroubi A, Gr?chenig K. Nonuniform sampling and reconstruction in shift-invariant spaces. SIAM Rev, 2001, 43: 585-620 |
| [2] | Basu B, Haziot S V, Staino A. Wave breaking for periodic solutions of a nonlinear shallow water equation. Applicable Analysis, 2022, 101(2): 519-526 |
| [3] | Benjamin T B, Bona J L, Mahony J J. Model equations for long waves in nonlinear dispersive systems. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 1972, 272(1220): 47-78 |
| [4] | Brandolese L. Breakdown for the Camassa-Holm equation using decay criteria and persistence in weighted spaces. International Mathematics Research Notices, 2012, 22: 5161-5181 |
| [5] | Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Physical Review Letters, 1993, 71(11): 1661-1664 |
| [6] | Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Annales de l'institut Fourier, 2000, 50(2): 321-362 |
| [7] | Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Annali della Scuola Normale Superiore di Pisa-Classe di Scienze, 1998, 26(2): 303-328 |
| [8] | Constantin A, Escher J. Analyticity of periodic traveling free surface water waves with vorticity. Annals of Mathematics, 2011: 559-568 |
| [9] | Constantin A, Lannes D. The hydrodynamical relevance of the Camassa-Holm and Degasperis-Procesi equations. Archive for Rational Mechanics and Analysis, 2009, 192(1): 165-186 |
| [10] | Constantin A, Strauss W A. Stability of peakons. Communications on Pure and Applied Mathematics. 2000, 53(5): 603-610 |
| [11] | Constantin A, Strauss W A. Stability of the Camassa-Holm Solitons. Journal of Nonlinear Science, 2002, 12(4): 415-422 |
| [12] | Fan L, Yan W. On the weak solutions and persistence properties for the variable depth KDV general equations. Nonlinear Analysis: Real World Applications, 2018, 44: 223-245 |
| [13] | Escher J, Yin Z. Well-posedness, blow-up phenomena, and global solutions for the b-equation. 2008, 624: 51-80 |
| [14] | Fan L, Yan W. The Cauchy problem for shallow water waves of large amplitude in Besov space. Journal of Differential Equations, 2019, 267(3): 1705-1730 |
| [15] | Gasull A, Geyer A. Traveling surface waves of moderate amplitude in shallow water. Nonlinear Analysis: Theory, Methods & Applications, 2014, 102: 105-119 |
| [16] | Geyer A. Solitary traveling water waves of moderate amplitude. Journal of Nonlinear Mathematical Physics, 2012, 19(supp01): 1240010 |
| [17] | Geyer A, Quirchmayr R. Traveling wave solutions of a highly nonlinear shallow water equation. Discrete and Continuous Dynamical Systems, 2018, 38(3): 1567-1604 |
| [18] | Guo Y, Wu Y, Lai S, et al. The global weak solution for the shallow water wave model of moderate amplitude. Applicable Analysis, 2017, 96(4): 663-678 |
| [19] | Himonas A A, Holliman C. On well-posedness of the Degasperis-Procesi equation. Discrete and Continuous Dynamical Systems, 2011, 31(2): 469-488 |
| [20] | Himonas A A, Holliman C. The Cauchy problem for a generalized Camassa-Holm equation. Adv Differential Equations, 2014, 19: 161-200 |
| [21] | Himonas A A, Kenig C. Non-uniform dependence on initial data for the CH equation on the line. Differential Integral Equations, 2009, 22: 201-224 |
| [22] | Himonas A A, Kenig C, Misiolek G. Non-uniform dependence for the periodic CH equation. Communications in Partial Differential Equations, 2010, 35(6): 1145-1162 |
| [23] | Himonas A A, Mantzavinos D. H?lder continuity for the Fokas-Olver-Rosenau-Qiao equation. Journal of Nonlinear Science, 2014, 24: 1105-1124 |
| [24] | Jiang B, Zhou Y. Cusped solitary wave with algebraic decay governed by the equation for surface waves of moderate amplitude. Journal of Nonlinear Mathematical Physics, 2020, 27(2): 219-226 |
| [25] | Kato T. Quasi-linear Equations of Evolution, with Applications to Partial Differential Equations//Everitt W N. Spectral Theory and Differential Equations. Berlin: Springer, 2006: 25-70 |
| [26] | Korteweg D J, De Vries G X. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science, 1895, 39(240): 422-443 |
| [27] | Li J, Kou K I. Dynamics of traveling wave solutions to a new highly nonlinear shallow water wave equation. International Journal of Bifurcation and Chaos, 2017, 27(03): 1750044 |
| [28] | Liu X, Liu J. On the low regularity solutions and wave breaking for an equation modeling shallow water waves of moderate amplitude. Nonlinear Analysis: Theory, Methods & Applications, 2014, 107}: 1-11 |
| [29] | Mi Y, Mu C. On the solutions of a model equation for shallow water waves of moderate amplitude. Journal of Differential Equations, 2013, 255(8): 2101-2129 |
| [30] | Mutluba? N D. On the Cauchy problem for a model equation for shallow water waves of moderate amplitude. Nonlinear Analysis: Real World Applications, 2013, 14(5): 2022-2026 |
| [31] | Mutluba? N D. Local well-posedness and wave breaking results for periodic solutions of a shallow water equation for waves of moderate amplitude. Nonlinear Analysis: Theory, Methods & Applications, 2014, 97: 145-154 |
| [32] | Mutluba? N D, Geyer A. Orbital stability of solitary waves of moderate amplitude in shallow water. Journal of Differential Equations, 2013, 255(2): 254-263 |
| [33] | Mutluba? N D, Geyer A, Matioc B V. Non-uniform continuity of the flow map for an evolution equation modeling shallow water waves of moderate amplitude. Nonlinear Analysis: Real World Applications, 2014, 17}: 322-331 |
| [34] | Mutluba? N D, Geyer A, Quirchmayr R. Well-posedness of a highly nonlinear shallow water equation on the circle. Nonlinear Analysis, 2020, 197: 11184917: 322-331 |
| [35] | Quirchmayr R. A new highly nonlinear shallow water wave equation. Journal of Evolution Equations, 2016, 16: 539-567 |
| [36] | Wang Y. The existence of global weak solutions to the shallow water wave model with moderate amplitude. Cogent Mathematics, 2016, 3(1): 1155829 |
| [37] | Yang X, Wu X. Wave breaking and presistent decay of solution to a shallow water wave equation. Discrete Continuous Dynamical Systems-Series S, 2016, 9(6): 2149-2165 |
| [38] | Yang S, Xu T. Well-posedness and persistence property for a shallow water wave equation for waves of large amplitude. Applicable Analysis, 2019, 98(5): 981-990 |
| [39] | Yin Z. On the Cauchy problem for an integrable equation with peakon solutions. Illinois Journal of Mathematics, 2003, 47(3): 649-666 |
| [40] | Zhou S. The local well-posedness, existence and uniqueness of weak solutions for a model equation for shallow water waves of moderate amplitude. Journal of Differential Equations, 2015, 258(12): 4103-4126 |
| [41] | Zhou S. Well-posedness and wave breaking for a shallow water wave model with large amplitude. Journal of Evolution Equations, 2020, 20(1): 141-163 |
| [42] | Zhou S, Mu C. Global conservative solutions for a model equation for shallow water waves of moderate amplitude. Journal of Differential Equations, 2014, 256(5): 1793-1816 |
| [43] | Zhou S, Qiao Z, Mu C, et al. Continuity and asymptotic behaviors for a shallow water wave model with moderate amplitude. Journal of Differential Equations, 2017, 263(2): 910-933 |
| [44] | Zhou S, Wang B, Chen R. Non-uniform dependence on initial data for the periodic Constantin-Lannes equation. Journal of Mathematical Physics, 2018, 59(3): 031502 |