| [1] | Alibaud N, Andreianov B. Non-uniqueness of weak solutions for the fractal Burgers equation. Ann Inst Henri Poincar Anal Non Linéaire, 2010, 27: 997-1016 | | [2] | Bouchard J P, Georges A. Anomalous diffusion in disordered media, Statistical mechanics, models and physical applications. Phys Rep, 1990, 195: 127-293 | | [3] | Burgers J M. Correlation problem in a one-dimensional model of turbulence. Nederl Akad Wetensch Proc, 1950, 53: 247-260 | | [4] | Caffarelli L, Silvestre L. Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation. Ann of Math, 2010, 171(3): 1903-1930 | | [5] | Chen S H, Hsia C H, Jung C Y, Kwon B. Asymptotic stability and bifurcation of time-periodic solutions for the viscous Burger's equation. J Math Anal Appl, 2017, 445: 655-676 | | [6] | Cole J D. On a quasi-linear parabolic equation occurring in aerodynamics. Quart Appl Math, 1951, 9: 225-236 | | [7] | Defterli O, D'Elia M, Du Q, et al. Fractional diffusion on bounded domains. Fract Calc Appl Anal, 2015, 18: 342-360 | | [8] | Dong H, Du D, Li D. Finite time singularities and global well-posedness for fractal Burgers equations. Indiana Univ Math J, 2009, 58: 807-821 | | [9] | Droniou J, Gallouet T, Vovelle J. Global solution and smoothing effect for a non-local regularization of a hyperbolic equation. J Evol Equ, 2003, 3: 499-521 | | [10] | Galdi G P, Sohr H. Existence and uniqueness of time-periodic physically reasonable Navier-Stokes flow past a body. Arch Ration Mech Anal, 2004, 172: 363-406 | | [11] | Hopf E. The partial differential equation $u_{t}+uu_{x}=\mu u_{xx}$. Comm Pure Appl Math, 1950, 3: 201-230 | | [12] | Hsia C H, Shiue M C. On the asymptotic stability analysis and the existence of time-periodic solutions of the primitive equations. Indiana Univ Math J, 2013, 62: 403-441 | | [13] | Iwabuchi T. Analyticity and large time behavior for the Burgers equation and the quasi-geostrophic equation, the both with the critical dissipation. Ann Inst Henri Poincar Anal Non Linéaire, 2020, 37: 855-876 | | [14] | Kato T, Ponce G. Commutator estimates and the Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891-907 | | [15] | Kiselev A, Nazarov F, Shterenberg R. Blow up and regularity for fractal Burgers euation. Dyn Partial Differ Equ, 2008, 5: 211-240 | | [16] | Kobayashi T. Time periodic solutions of the Navier-Stokes equations with the time periodic Poiseuille flow under (GOC) for a symmetric perturbed channel in $R^{2}$. J Math Soc Japan, 2015, 67: 1023-1042 | | [17] | Mellet A, Mischler S, Mouhot C. Fractional diffusion limit for collisional kinetic equations. Arch Ration Mech Anal, 2011, 199: 493-525 | | [18] | Miao C, Wu G. Global well-posedness of the critical Burgers equation in critiacal Besov spaces. J Differential Equations, 2009, 247: 1673-1693 | | [19] | Wang T, Zhang B. Forced oscillation of viscous Burgers' equation with a time-periodic force. Discrete Contin Dyn Syst Ser B, 2021, 26: 1205-1221 | | [20] | Xu F, Zhang Y, Li F. Uniqueness and stability of steady-state solution with finite energy to the fractal Burgers equation. arXiv:2107.11761v1 |
|