Acta mathematica scientia,Series A ›› 2023, Vol. 43 ›› Issue (6): 1929-1942.
Previous Articles Next Articles
Fan Shishi(),Li Haixia*(
),Lu Yindou
Received:
2022-06-10
Revised:
2023-03-06
Online:
2023-12-26
Published:
2023-11-16
Supported by:
CLC Number:
Fan Shishi, Li Haixia, Lu Yindou. Dynamics Analysis of a Diffusive Predator-Prey Model with Beddington-DeAngelis Function Response and Harvesting[J].Acta mathematica scientia,Series A, 2023, 43(6): 1929-1942.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] |
Ko W, Ryu K. Qualitative analysis of a predator-prey model with Holling type II functional response incorporating a prey refuge. J Differential Equations, 2006, 231(2): 534-550
doi: 10.1016/j.jde.2006.08.001 |
[2] |
Peng R, Shi J. Non-existence of non-constant positive steady states of two Holling type-II predator-prey systems: Strong interaction case. J Differential Equations, 2009, 247(3): 866-886
doi: 10.1016/j.jde.2009.03.008 |
[3] |
Lu M, Huang J. Global analysis in Bazykin's model with Holling II functional response and predator competition. J Differential Equations, 2021, 280: 99-138
doi: 10.1016/j.jde.2021.01.025 |
[4] |
Chen W Y, Wang M X. Qualitative analysis of predator-prey models with Beddington-DeAngelis functional response and diffusion. Math Comput Model, 2005, 42(1): 31-44
doi: 10.1016/j.mcm.2005.05.013 |
[5] |
Zhao S. Analysis on stochastic dynamics of two-consumers-one-resource competing systems with Beddington-DeAngelis functional response. Int J Biomath, 2021, 14(2): 2050058
doi: 10.1142/S1793524520500588 |
[6] |
Wang R, Jia Y F. Analysis on bifurcation for a predator-prey model with Beddington-DeAngelis functional response and non-selective harvesting. Acta Appl Math, 2016, 143: 15-27
doi: 10.1007/s10440-015-0025-2 |
[7] | Liu X, Huang Q. The dynamics of a harvested predator-prey system with Holling type IV functional response. Biosystems, 2018, 169: 26-39 |
[8] |
Liu X, Huang Q. Analysis of optimal harvesting of a predator-prey model with Holling type IV functional response. Ecol Complex, 2020, 42: 100816
doi: 10.1016/j.ecocom.2020.100816 |
[9] |
Djilali S, Bentout S. Pattern formations of a delayed diffusive predator-prey model with predator harvesting and prey social behavior. Math Method Appl Sci, 2021, 44(11): 9128-9142
doi: 10.1002/mma.v44.11 |
[10] |
Duque C, Lizana M. On the dynamics of a predator-prey model with nonconstant death rate and diffusion. Nonlinear Anal: RWA, 2011, 12(4): 2198-2210
doi: 10.1016/j.nonrwa.2011.01.002 |
[11] |
Yang R, Wei J. Bifurcation analysis of a diffusive predator-prey system with nonconstant death rate and Holling III functional response. Chaos Soliton Fract, 2015, 70: 1-13
doi: 10.1016/j.chaos.2014.10.011 |
[12] | Peng H, Zhang X. The dynamics of stochastic predator-prey models with non-constant mortality rate and general nonlinear functional response. J Nonl Mod Anal, 2020, 2: 495-511 |
[13] |
Ye J, Wang Y, Jin Z, et al. Dynamics of a predator-prey model with strong Allee effect and nonconstant mortality rate. Math Biosci Eng, 2022, 19(4): 3402-3426
doi: 10.3934/mbe.2022157 pmid: 35341257 |
[14] | 李海侠. 一类食物链模型正解的稳定性和唯一性. 数学物理学报, 2017, 37A(6): 1094-1104 |
Li H X. Stability and uniqueness of positive solutions for a food-chain model. Acta Math Sci, 2017, 37A(6): 1094-1104 | |
[15] |
Li H X, Li Y L, Yang W B. Existence and asymptotic behavior of positive solutions for a one-prey and two-competing-predators system with diffusion. Nonlinear Anal: RWA, 2016, 27: 261-282
doi: 10.1016/j.nonrwa.2015.07.010 |
[16] |
Dancer E N. On the indices of fixed points of mappings in cones and applications. J Math Anal Appl, 1983, 91(1): 131-151
doi: 10.1016/0022-247X(83)90098-7 |
[17] |
Jia Y, Wu J, Nie H. The coexistence states of a predator-prey model with nonmonotonic functional response and diffusion. Acta Appl Math, 2009, 108(2): 413-428
doi: 10.1007/s10440-008-9319-y |
[18] |
Crandall M G, Rabinowitz P H. Bifurcation from simple eigenvalues. J Funct Anal, 1971, 8(2): 321-340
doi: 10.1016/0022-1236(71)90015-2 |
[19] |
Wu J H. Global bifurcation of coexistence state for a competition model in the chemostat. Nonlinear Anal, 2000, 39(7): 817-835
doi: 10.1016/S0362-546X(98)00250-8 |
[20] |
Rabinowitz P H. Some global results for nonlinear eigenvalue problems. J Funct Anal, 1971, 7(3): 487-513
doi: 10.1016/0022-1236(71)90030-9 |
[21] |
Cano-Casanova S. Existence and structure of the set of positive solutions of a general class of sublinear elliptic non-classical mixed boundary value problems. Nonlinear Anal: TMA, 2002, 49(3): 361-430
doi: 10.1016/S0362-546X(01)00116-X |
[22] |
Pao C V. Quasisolutions and global attractor of reaction-diffusion systems. Nonlinear Anal: TMA, 1996, 26(12): 1889-1903
doi: 10.1016/0362-546X(95)00058-4 |
[1] | Lv Dongting. Globally Asymptotic Stability of 2-Species Reaction-Diffusion Systems of Spatially Inhomogeneous Models [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1171-1183. |
[2] | Liang Qing. Existence, Uniqueness and Stability of the Global Solutions to Two Classes of Pantogragh Stochastic Functional Differential Equations with Markovian Switching [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1184-1205. |
[3] | Liu Yu, Chen Guanggan, Li Shuyong. Nonlinear Stability of Traveling Waves for Stochastic Kuramoto-Sivashinsky Equation [J]. Acta mathematica scientia,Series A, 2025, 45(3): 790-806. |
[4] | Cao Lei,Chen Xiao. The Existence of Domain Wall Solution Arising in Abelian Higgs Model Subject to Born-Infeld Theory [J]. Acta mathematica scientia,Series A, 2025, 45(2): 567-575. |
[5] | Liu Jia, Bao Xiongxiong. Asymptotic Stability of Pyramidal Traveling Front for Nonlocal Delayed Diffusion Equation [J]. Acta mathematica scientia,Series A, 2025, 45(1): 44-53. |
[6] | Xiao Jianglong, Song Yongli, Xia Yonghui. Spatiotemporal Dynamics Induced by the Interaction Between Fear and Schooling Behavior in a Diffusive Model [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1577-1594. |
[7] | Tang Jun, Wu Ailong. Event-Triggered Control for a Class of Stochastic Time-Delay Nonlinear Systems [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1607-1616. |
[8] | Zhang Yongxue, Jia Wensheng. Stability of Solutions for Controlled Systems of Generalized Multiobjective Multi-Leader-Follower Games Under Bounded Rationality [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1689-1702. |
[9] | Sun Xin, Duan Yu. Multiplicity of Solutions for Sublinear Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1205-1215. |
[10] | Yang Hong, Zhang Xiaoguang. A Stochastic SIS Epidemic Model on Simplex Complexes [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1392-1399. |
[11] | Fan Tianjiao, Feng Lichao, Yang Yanmei. Generalization of Inequality and Its Application in Additive Time-Varying Delay Systems [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1335-1351. |
[12] | Guo Yan, Xu Xiaochuan. Local Solvability and Stability of the Inverse Spectral Problems for the Discontinuous Sturm-Liouville Problem with the Mixed Given Data [J]. Acta mathematica scientia,Series A, 2024, 44(4): 859-870. |
[13] | Pan Lijun, Lv Shun, Weng Shasha. Riemann Solution and Stability of Coupled Aw-Rascle-Zhang Model [J]. Acta mathematica scientia,Series A, 2024, 44(4): 885-895. |
[14] | Zhang Chunguo, Sun Baonan, Fu Yuzhi, Yu Xin. Stabilization of 2-D Mindlin Timoshenko Plate Systems with Local Damping [J]. Acta mathematica scientia,Series A, 2024, 44(4): 946-959. |
[15] | Gao Caixia, Zhao Dongxia. The Delayed Control and Input-to-State Stability of ARZ Traffic Flow Model with Disturbances [J]. Acta mathematica scientia,Series A, 2024, 44(4): 960-977. |
|