| [1] | Blokh A M, Lyubich M Y. Measurable dynamics of$S$-unimodal maps of the interval. Annales Scientifiques de l'Ecole Normale Supérieure, 1991, 24(5): 545-573 |
| [2] | Bowen R. A. Horseshoe with Positive Measure. Inventiones Mathematicae, 1975, 29: 203-204 |
| [3] | Bruin H. Topological conditions for the existence of absorbing Cantor sets. Transactions of the American Mathematical Society, 1998, 350(6): 2229-2263 |
| [4] | Bruin H, Keller G, Nowicki T, Strien S V. Wild Cantor attractors exist. Annals of Mathematics, 1996: 97-130 |
| [5] | Bruin H, Keller G, Pierre M S. Adding machines and wild attractors. Ergodic Theory and Dynamical Systems, 1997, 17(6): 1267-1287 |
| [6] | Bruin H, Todd M. Wild attractors and thermodynamic formalism. Monatshefte für Mathematik, 2015, 178(1): 39-83 |
| [7] | De Melo W, Van Strien S. One-Dimensional Dynamics. Berlin: Springer, 2012 |
| [8] | Devaney R L. An Introduction to Chaotic Dynamical Systems. Boca Raton: CRC Press, 2018 |
| [9] | Ding Y, Sun Y. $\alpha$-limit sets and Lyapunov function for maps with one topological attractor. Acta Mathematica Scientia, 2022, 42B(2): 813-824 |
| [10] | Ding Y, Xiao J. Thick hyperbolic repelling invariant Cantor sets and wild attractors. Nonlinearity, 2023, 36(2): 1378-1397 |
| [11] | Glendinning P. Milnor attractors and topological attractors of a piecewise linear map. Nonlinearity, 2001, 14(2): 239-257 |
| [12] | Graczyk J, Kozlovski O S. On Hausdorff dimension of unimodal attractors. Communications in Mathematical Physics, 2006, 264(3): 565-581 |
| [13] | Kozlovski O S. Getting rid of the negative Schwarzian derivative condition. Annals of Mathematics, 2000: 743-762 |
| [14] | Li S, Shen W. Hausdorff dimension of Cantor attractors in one-dimensional dynamics. Inventiones Mathematicae, 2008, 171(2): 345-387 |
| [15] | Li S, Shen W. The topological complexity of Cantor attractors for unimodal interval maps. Transactions of the American Mathematical Society, 2016, 368(1): 659-688 |
| [16] | Li S, Wang Q. A new class of generalized Fibonacci unimodal maps. Nonlinearity, 2014, 27(7): 1633-1643 |
| [17] | Liu J, Shi Y G. Conjugacy problem of strictly monotone maps with only one jump discontinuity. Results in Mathematics, 2020, 75(3): 1-15 |
| [18] | Lyubich M. Combinatorics, geometry and attractors of quasi-quadratic maps. Annals of Mathematics, 1994, 140(2): 347-404 |
| [19] | Lyubich M, Milnor J. The Fibonacci unimodal map. Journal of the American Mathematical Society, 1993, 6(2): 425-457 |
| [20] | Milnor J. On the concept of attractor. Communications in Mathematical Physics, 1985, 99(2): 177-195 |
| [21] | Murdock J, Botelho F. A map with invariant Cantor set of positive measure. Nonlinear Analysis: Theory, Methods & Applications, 2005, 63(5-7): e659-e668 |