| [1] | Benci V, Cerami G. Existence of positive solutions of the equation$-\Delta u+a(x)u=u^{\frac{N+2}{N-2}}$in$\mathbb{R}^{N}$. J Funct Anal, 1990, 88: 90-117 | | [2] | Cerami G, Molle R. Multiple positive bound states for critical Schr?dinger-Poisson systems. ESAIM Control Optim Calc Var, 2019, 25: Paper No. 73 | | [3] | Chen W, Li C, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59(3): 330-343 | | [4] | Chen Z, Zou W. Positive least energy solutions and phase separation for coupled Schr?dinger equations with critical exponent: Higher dimensional case. Calc Var Partial Differential Equations, 2015, 52(1/2): 423-467 | | [5] | Dai W, Huang J, Qin Y, et al. Regularity and classification of solutions to static Hartree equations involving fractional Laplacians. Discrete Contin Dyn Syst, 2019, 39(3): 1389-1403 | | [6] | Dalfovo F, Giorgini S, Pitaevskii L P, Stringari S. Theory of Bose-Einstein condensation in trapped gases. Rev Mod Phys, 1999, 71: 463-512 | | [7] | Du L, Yang M. Uniqueness and nondegeneracy of solutions for a critical nonlocal equation. Discrete Contin Dyn Syst, 2019, 39(10): 5847-5866 | | [8] | Esry B, Greene C, Burke J, Bohn J. Hartree-Fock theory for double condensates. Phys Rev Lett, 1997, 78: 3594-3597 | | [9] | Gao F, Liu H, Moroz V, Yang M. High energy positive solutions for a coupled Hartree system with Hardy-Littlewood-Sobolev critical exponents. J Differential Equations, 2021, 287: 329-375 | | [10] | Gao F, Yang M. The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci China Math, 2018, 61(7): 1219-1242 | | [11] | Guo L, Li Q. Multiple high energy solutions for fractional Schr?dinger equation with critical growth. Calc Var Partial Differential Equations, 2022, 61(1): Paper No. 15 | | [12] | Liu H, Liu Z. Positive solutions of a nonlinear Schr?dinger system with nonconstant potentials. Discrete Contin Dyn Syst, 2016, 36: 1431-1464 | | [13] | Liu H, Liu Z. A coupled Schr?dinger system with critical exponent. Calc Var Partial Differential Equations, 2020, 59(5): Paper No. 145 | | [14] | Mitchell M, Segev M. Self-trapping of incoherent white light. Nature, 1997, 387: 880-883 | | [15] | Wang J. Qualitative analysis for the nonlinear fractional Hartree type system with nonlocal interaction. Adv Nonlinear Anal, 2022, 11(1): 385-416 | | [16] | Willem M. Minimax Theorems. Progress in Nonlinear Differential Equations and Their Applications, 24. Boston: Birkh?user, 1996 | | [17] | Zheng Y, Gao F, Shen Z, Yang M. On a class of coupled critical Hartree system with deepening potential. Math Methods Appl Sci, 2021, 44(1): 772-798 |
|