| [1] | Alves C O, Nóbrega A B, Yang M B. Multi-bump solutions for Choquard equation with deepening potential well. Calc Var Partial Differ Equ, 2016, 55(3): 1-28 | | [2] | Alves C O, Barros L M. Existence and multiplicity of solutions for a class of elliptic problem with critical growth. Monatsh Math, 2018, 187(2): 195-215 | | [3] | Ambrosetti A, Brezis H, Cerami G. Combined effects of concave and convex nonlinearities in some elliptic problems. J Funct Anal, 1994, 122(2): 519-543 | | [4] | Alves C O, Ding Y H. Multiplicity of positive solutions to a$p$-Laplacian equation involving critical nonlinearity. J Math Anal Appl, 2003, 279(2): 508-521 | | [5] | Bahri A, Coron J M. On a nonlinear elliptic equation involving the Sobolev exponent: The effect of the topology of the domain. Comm Pure Appl Math, 1988, 41(3): 253-294 | | [6] | Bartsch T, Wang Z Q. Multiple positive solutions for a nonlinear Schr?dinger equation. Z Angew Math Phys, 2000, 51(3): 366-384 | | [7] | Benci V, Cerami G. Positive solutions of some nonlinear elliptic problems in exterior domains. Arch Rational Mech Anal, 1987, 99(4): 283-300 | | [8] | Benci V, Cerami G. The effect of the domain topology on the number of positive solutions of nonlinear elliptic problems. Arch Rational Mech Anal, 1991, 114(1): 79-93 | | [9] | Benci V, Cerami G. Multiple positive solutions of some elliptic problems via the Morse theorem and the domain topology. Calc Var Partial Differ Equ, 1994, 2: 29-48 | | [10] | Cingolani S, Clapp M, Secchi S. Multiple solutions to a magnetic nonlinear Choquard equation. Z Angew Math Phys, 2012, 63: 233-248 | | [11] | Clapp M, Ding Y H. Positive solutions for a Schr?dinger equation with critical nonlinearity. Z Angew Math Phys, 2004, 55(4): 592-605 | | [12] | Gao F S, Da Silva E D, Yang M B, Zhou J Z. Existence of solutions for critical Choquard equations via the concentration compactness method. Proc R Soc Edinb Sect A Math, 2020, 150(2): 921-954 | | [13] | Gao F S, Yang M B. On the Brezis-Nirenberg type critical problem for nonlinear Choquard equation. Sci China Math, 2018, 61(7): 1219-1242 | | [14] | Ghimenti M, Pagliardini D. Multiple positive solutions for a slightly subcritical Choquard problem on bounded domains. Calc Var Partial Differ Equ, 2019, 58(5): 1-21 | | [15] | Goel D. The effect of topology on the number of positive solutions of elliptic equation involving Hardy-Littlewood-Sobolev critical exponent. Topol Methods Nonlinear Anal, 2019, 54(2): 751-771 | | [16] | Goel D, R?dulescu V D, Sreenadh K. Coron problem for nonlocal equations involving Choquard Nonlinearity. Adv Nonlinear Stud, 2020, 20(1): 141-161 | | [17] | Goel D, Sreenadh K. Critical growth elliptic problems involving Hardy-Littlewood-Sobolev critical exponent in non-contractible domains. Adv Nonlinear Anal, 2020, 9(1): 803-835 | | [18] | Lieb E H. Existence and uniqueness of the minimizing solution Choquard's nonlinear equations. Stud Appl Math, 1977, 57: 93-105 | | [19] | Lieb E H, Loss M. Analysis. Rhode Island: AMS, 2001 | | [20] | Ma P, Zhang J H. Existence and multiplicity of solutions for fractional Choquard. Nonlinear Anal, 2017, 164: 100-117 | | [21] | Lions P L. The Choquard equation and related questions. Nonlinear Anal, 1980, 4(6): 1063-1072 | | [22] | Moroz V, Van Schaftingen J. A guide to the Choquard equation. J Fixed Point Theory Appl, 2017, 19(1): 773-813 | | [23] | Moroz V, Van Schaftingen J. Ground states of nonlinear Choquard equations: Existence, qualitative properties and decay asymptotics. J Funct Anal, 2013, 265: 153-184 | | [24] | Moroz V, Van Schaftingen J. Existence of groundstates for a class of nonlinear Choquard equations. Trans Am Math Soc, 2015, 367(9): 6557-6579 | | [25] | Moroz V, Van Schaftingen J. Semi-classical states for the Choquard equation. Calc Var Partial Differ Equ, 2015, 52(1/2): 199-235 | | [26] | Palatucci G, Pisante A. Improved Sobolev embeddings, profile decomposition and concentration compactness fractional Sobolev space. Calc Var Partial Differ Equ, 2014, 50(3/4): 799-829 | | [27] | Pekar S. Untersuchung über die Elektronentheorie der Kristalle. Berlin: Akademie Berlag, 1954 | | [28] | Shen Z F, Gao F S, Yang M B. On critical Choquard equation with potential well. Discrete Contin Dyn Syst, 2018, 38(7): 3567-3593 | | [29] | Willem M. Minimax Theorems, Progress in Nonlinear Differential Equations and Their Applications. Boston: Birkh?user, 1996, 24 | | [30] | Xu Z Y, Yang J F. Multiple solutions to multi-critical Schr?dinger equations. Adv Nonlinear Stud, 2022, 22(1): 273-288 | | [31] | Yang J F, Zhu L P. Multiple solutions to Choquard equation in exterior domain. J Math Anal Appl, 2022, 507(1): 125726 |
|