| [1] | Guo J, Xiao J X, Zhao H J, et al. Global solutions to a hyperbolic-parabolic coupled system with large initial data. Acta Math Sci, 2009, 29B(3): 629-641 | | [2] | Horstmann D. From 1970 until present: the Keller-Segel model in chemotaxis and its consequences. Jahresbericht der Deutschen Mathematiker-Vereinigung, 2003, 105: 103-165 | | [3] | Hou Q Q, Wang Z A, Zhao K. Boundary layer problem on a hyperbolic system arising from chemotaxis. J Differential Equations, 2016, 261: 5035-5070 | | [4] | Hsiao L, De Mottoni P. Existence and uniqueness of the Riemann problem for a nonlinear system of conservation laws of mixed type. Transactions of the American Mathematical Society, 1990, 332(2): 121-158 | | [5] | He F, Wang Z, Chen T T. The shock waves for a mixed-type system from chemotaxis. Acta Math Sci, 2023, 43B(4): 1717-1734 | | [6] | Keller E F, Segel L A. Model for chemotaxis. J Theoretical Biology, 1971, 30(2): 225-234 | | [7] | Keller E F, Segel L A. Traveling bands of chemotactic bacteria: a theoretical analysis. J Theoretical Biology, 1971, 30(2): 235-248 | | [8] | Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. J Theoretical Biology, 1970, 26(3): 399-415 | | [9] | Li H C, Zhao K. Initial-boundary value problems for a system of hyperbolic balance laws arising from chemotaxis. J Differential Equations, 2015, 258: 302-338 | | [10] | Li T, Pan R, Zhao K. Global dynamics of a hyperbolic-parabolic model arising from chemotaxis. SIAM J Appl Math, 2012, 72: 417-443 | | [11] | Li J, Wang L, Zhang K. Asymptotic stability of a composite wave of two traveling waves to a hyperbolic-parabolic system modeling chemotaxis. Math Methods Appl Sci, 2013, 36: 1862-1877 | | [12] | Li T, Wang Z A. Nonlinear stability of travelling waves to a hyperbolic-parabolic system modeling chemotaxis. SIAM J Appl Math, 2009, 70: 1522-1541 | | [13] | Li T, Liu H, Wang L. Oscillatory traveling wave solutions to an attractive chemotaxis system. J Differential Equation, 2016, 261: 7080-7098 | | [14] | Li T, Mathur N. Rienmann problem for a non-strictly hyperbolic system in chemotaxis. Discrete and Continuous Dynamical System Series B, 2022, 27(4): 2173-2187 | | [15] | Li J Y, Li T, Wang Z A. Stability of traveling waves of the Keller-Segel system with logarithmic sensitivity. Math Models Methods Appl Sci, 2014, 24: 2819-2849 | | [16] | Smoller J. Shock Waves and Reaction-Diffusion Equations. New York: Springer-Verlag, 1994 | | [17] | Zhang M, Zhu C J. Global existence of solutions to a hyperbolic-parabolic system. Proc Amer Math Soc, 2007, 135(4): 1017-1027 |
|