| [1] | Korteweg D J, De Vries G. On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil Mag, 1895, 39(5): 422-443 | | [2] | Kato T. Quasi-linear equation of evolution, with applications to partical differential equations//Spectral Theorey and Differential Equation. Berlin: Springer-Verlag, 1975, 448: 25-70 | | [3] | Kato T. On the Korteweg-de Vries equation. Manuscripta Math, 1979, 28(1): 89-99 | | [4] | Lax P D. Integrals of nonlinear equations of evolution and solitary waves. Comm Pure Appl Math, 1968, 21(5): 467-490 | | [5] | Camassa R, Holm D D. An integrable shallow water equation with peaked solitons. Phys Rev Letters, 1993, 71(11): 1661-1664 | | [6] | Fuchssteiner B, Fokas A S. Symplectic structures, their Backlund transformations and hereditary symmetries. Physica D: Nonlinear Phenomena, 1981, 4(1): 47-66 | | [7] | Camassa R, Holm D D, Hyman J M. A new integrable shallow water equation. Adv Appl Mech, 1994, 31: 1-33 | | [8] | Constantin A. The Hamiltonian structure of the Camassa-Holm equation. Expo Math, 1997, 15: 53-85 | | [9] | Constantin A, Strauss W A. Stability of peakons. Comm Pure Appl Math, 2000, 53(5): 603-610 | | [10] | Constantin A, Strauss W A. Stability of the Camassa-Holm solitons. J Nonlinear Sci, 2002, 12(4): 415-422 | | [11] | Bressan A, Constantin A. Global conservative solutions of the Camassa-Holm equation. Arch Rat Mech Anal, 2007, 183(2): 215-239 | | [12] | Bressan A, Constantin A. Global dissipative solutions of the Camassa-Holm equation. Anal Appl, 2007, 5(1): 1-27 | | [13] | Constantin A. Existence of permanent and breaking waves for a shallow water equation: a geometric approach. Ann lnst Fourier, 2000, 50(2): 321-362 | | [14] | Constantin A, Escher J. Global existence and blow-up for a shallow water equation. Annali Sc Norm Sup Pisa, 1998, 26(2): 303-328 | | [15] | Constantin A, Escher J. Global weak solutions for a shallow water equation. Indiana Univ Math J, 1998, 47: 1527-1545 | | [16] | Danchin R. A few remarks on the Camassa-Holm equation. Differ Intergal Equ, 2001, 14(8): 953-988 | | [17] | Danchin R. A note on well-posedness for Camassa-Holm equation. J Differ Equations, 2003, 192(2): 429-444 | | [18] | Fuchssteiner B. Some tricks from the symmetry-toolbox for nonlinear equations: generalizations of the Camassa-Holm equation. Physica D: Nonlinear Phenomena, 1996, 95(3/4): 229-243 | | [19] | Olver P J, Rosenau P. Tri-Hamiltonian duality between solitons and solitary-wave solutions having compact support. Phys Rev E, 1996, 53(2): 1900-1906 | | [20] | Fu Y, Gui G L, Liu Y, Qu C Z. On the Cauchy problem for the integrable modified Camassa-Holm equation with cubic nonlinearity. J Differ Equations, 2013, 255(7): 1905-1938 | | [21] | Gui G L, Liu Y, Olver P J, Qu C Z. Wave-breaking and peakons for a modified Camassa-Holm equation. Comm Math Phys, 2013, 319(3): 731-759 | | [22] | Wu X L, Guo B L. The exponential decay of solutions and traveling wave solutions for a modified Camassa-Holm equation with cubic nonlinearity. J Math Phys, 2014, 55(8): 081504 | | [23] | Du L J, Wu X L. Global well-posedness of a two-component b-family equations in $ H^{s-1,p} \left (\mathbb{R} \right )\times H^{s,p} \left (\mathbb{R} \right ) $. J Math Fluid Mech, 2022, 24(4): 100 | | [24] | Liu Z Y, Wu X L. Well-posedness and blow-up phenomena for the Camassa-Holm equation in $ H^{s,p} \left (\mathbb{R} \right ) $. [2024-2-26]. https://doi.org/10.22541/au.170668925.50901220/v1 | | [25] | Pazy A. Semigroup of Linear Operators and Applications to Partial Differential Equations. New York: Springer-Verlag, 1986 |
|