| [1] | Aifantis E C. On the problem of diffusion in solids. Acta Mech, 1980, 37(3): 265-296 | | [2] | Lions J L, Magenes E. Non-Homogen-homogeneous Boundary Value Problems and Applications. Berlin: Springer-Verlag, 1972 | | [3] | Chen P J, Gurtin M E. On a theory of heat condition involving two temperatures. Z Ange Math Phys, 1968, 19(4): 614-627 | | [4] | Wang S Y, Li D S, Zhong C K. On the dynamics of a class of nonclassical parabolic equations. J Math Anal Appl, 2006, 317(2): 565-582 | | [5] | Sun C Y, Yang M H. Dynamics of the nonclassical diffusion equation. Asymptot Anal, 2008, 59(1): 51-81 | | [6] | Wu H Q, Zhang Z Y. Asymptotic regularity for the nonclassical diffusion equation with lower regular foring term. Dyna Syst, 2011, 26(4): 391-400 | | [7] | Wang X, Yang L, Zhong C K. Attractors for the nonclassical diffusion equations with fading memory. J Math Anal Appl, 2010, 362(2): 327-337 | | [8] | Zhang Y B, Wang X, Gao C H. Strong global attractors for nonclassical diffusion equation with fading memory. Adv Difference Equ, 2017, 2017(1): 1-14 | | [9] | Xiao Y L. Attractors for a nonclassical diffusion equation. Acta Math Appl Sin, 2002, 18(2): 273-276 | | [10] | Wang Y H, Wang L Z. Trajectory attractors for nonclassical diffusion equations with fading memory. Acta Math Sci, 2013, 33(3): 721-737 | | [11] | Conti M, Pata V, Temam R. Attractors for the processes on time-dependent spaces. Applications to wave equations. J Differential Equations, 2013, 255(6): 1254-1277 | | [12] | Conti M, Danese V, Giorgi C, et al. A model of viscoelasticity with time-dependent memory kernels. Amer J Math, 2016, 140(2): 349-389 | | [13] | Dafermos C M. Asymptotic stability in viscoelasticity. Arch Rational Mech Anal, 1970, 37(4): 297-308 | | [14] | Pata V, Squassina M. On the strongly damped wave equation. Comm Math Phys, 2005, 253(3): 511-533 | | [15] | Grasselli M, Pata V. Uniform attractors of nonautonomous dynamical systems with memory//Lorenzi A, Ruf B. Evlution Equation, Semigroups and Functional Analysis. Basel: Birkh?user, 2002: 155-178 | | [16] | Simon J. Compact sets in the space $L^p(0,T;B)$. Ann Mat Pura Appl, 1987, 146(1): 65-96 | | [17] | Conti M, Danese V, Pata V. Viscoelasticity with time-dependent memory kernels, Part Ⅱ: Asymptotic behavior of solutions. Amer J Math, 2018, 140(6): 1687-1729 | | [18] | Borini S, Pata V. Uniform attractors for a strongly damped wave equation with linear memory. Asymptot Anal, 1999, 20(3): 263-277 | | [19] | Zelik S. Asymptotic regularity of solutions of a nonautonomous damped wave equation with a critical growth exponent. Commun Pure Appl Anal, 2004, 3(4): 921-934 | | [20] | Yang L, Wang X. Existence of attractors for the non-autonomous berger equation with nonlinear damping. Electronic J Differential Equations, 2017, 2017(278): 1-14 | | [21] | Meng F J, Wu J, Zhao C X. Time-dependent global attractor for extensible Berger equation. J Math Anal Appl, 2019, 469(2): 1045-1069 | | [22] | Conti M, Pata V. Asymptotic structure of the attractor for processes on time-dependent spaces. Nonlinear Anal: Real World Appl, 2014, 19: 1-10 |
|