[1] |
Abhyankar S S, Moh T T. A reduction theorem for divergent power series. J Reine Angew Math, 1970, 241: 27-33
|
[2] |
Beardon A F. Iteration of Rational Functions. New York: Springer, 1965
|
[3] |
Fridman B L, Ma D W. Osgood-Hartogs type properties of power series and smooth functions. Pacific J Math, 2011, 251: 67-79
|
[4] |
Fridman B L, Ma D W, Neelon T S. On convergence sets of divergent power series. Annales Polonici Mathematici, 2012, 106: 193-198
|
[5] |
H¨ormander L. An Introduction to Complex Analysis in Several Variables. 3nd ed. Netherland: North- Holland, 1990
|
[6] |
Knill O. Renormalization of random Jacobi operators. Comm Math Phys, 1994, 164(1): 195-215
|
[7] |
Lelong P. On a problem of M.A. Zorn. Proc Amer Math Soc, 1951, 2: 11-19
|
[8] |
Levenberg N, Molzon R E. Convergence sets of a formal power series. Math Z, 1988, 197: 411-420
|
[9] |
Ma D W, Neelon T S. On convergence sets of formal power series. Complex Analysis and its Synergies, 2015, 1: Article number 4
|
[10] |
Sathaye A. Convergence sets of divergent power series. J Reine Angew Math, 1976, 283: 86-98
|
[11] |
Spallek K, Tworzewski P, Winiarski T. Osgood-Hartogs-theorem of mixed type. Math Ann, 1990, 288: 75-88
|