| [1] | Oplinger D. Frequency response of a nonlinear stretched string. J Acoust Soc Amer, 1960, 32: 1529-1538 | | [2] | Kirchhoff G. Vorlesungen über Mathematische Physik: Mechanik. Leipzig: Teubner, 1876 | | [3] | Ambrosetti A, Cerami G, Ruiz D. Solitons of linearly coupled systems of semilinear non-autonomous equations on $ \mathbb{R}^{N} $. J Funct Anal, 2008, 254(11): 2816-2845 | | [4] | Ambrosetti A, Colorado E, Ruiz D. Multi-bump solitons to linearly coupled systems of nonlinear Schr?dinger equations. Calc Var Partial Differential Equations, 2007, 30(1): 85-112 | | [5] | Chen Z, Zou W. Ground states for a system of Schr?dinger equations with critical exponent. J Funct Anal, 2012, 262(7): 3091-3107 | | [6] | Chen Z, Zou W. On linearly coupled Schr?dinger systems. Proc Amer Math Soc, 2014, 142(1): 323-333 | | [7] | Peng S, Shuai W, Wang Q. Multiple positive solutions for linearly coupled nonlinear elliptic systems with critical exponent. J Differential Equations, 2017, 263(1): 709-731 | | [8] | Brezis H, Nirenberg L. Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Comm Pure Appl Math, 1983, 36(4): 437-477 | | [9] | Naimen D. The critical problem of Kirchhoff type elliptic equations in dimension four. J Differential Equations, 2014, 257(4): 1168-1193 | | [10] | Naimen D. On the Brezis-Nirenberg problem with a Kirchhoff type perturbation. Adv Nonlinear Stud, 2015, 15(1): 135-156 | | [11] | Clapp M, Weth T. Multiple solutions for the Brezis-Nirenberg problem. Adv Differential Equations, 2005, 10(4): 463-480 | | [12] | Gao F, Yang M. The Brezis-Nirenberg type critical problem for the nonlinear Choquard equation. Sci China Math, 2018, 61(7): 1219-1242 | | [13] | Servadei R, Valdinoci E. The Brezis-Nirenberg result for the fractional Laplacian. Trans Amer Math Soc, 2015, 367(1): 67-102 | | [14] | He X, Zou W. Ground state solutions for a class of fractional Kirchhoff equations with critical growth. Sci China Math, 2019, 62(5): 853-890 | | [15] | Xie Q, Ma S, Zhang X. Bound state solutions of Kirchhoff type problems with critical exponent. J Differential Equations, 2016, 261(2): 890-924 | | [16] | He Y, Li G. Standing waves for a class of Kirchhoff type problems in $ \mathbb{R}^{3} $ involving critical Sobolev exponents. Calc Var Partial Differential Equations, 2015, 54(3): 3067-3106 | | [17] | Tang X, Chen S. Ground state solutions of Nehari-Pohozaev type for Kirchhoff-type problems with general potentials. Calc Var Partial Differential Equations, 2017, 56(4): 110 | | [18] | Lü D, Peng S. Existence and asymptotic behavior of vector solutions for coupled nonlinear Kirchhoff-type systems. J Differential Equations, 2017, 263(12): 8947-8978 | | [19] | Lions P. The concentration-compactness principle in the calculus of variations. The limit case I. Rev Mat Iberoamericana, 1985, 1(1): 145-201 |
|