| [1] | Avila A, Bochi J, Damanik D. Cantor spectrum for Schr?dinger operators with potentials arising from generalized skew-shifts. Duke Math J, 2009, 146(2): 253-280 |
| [2] | Avila A, Jitomirskaya S. Almost localization and almost reducibility. J Eur Math Soc, 2009, 12(1): 93-131 |
| [3] | Bochner S, Martin W T. Several Complex Variables. Princeton NJ: Princeton University Press, 1948 |
| [4] | Bourgain J. Green's Function Estimates for Lattice Schr?dinger Operators and Applications. Princeton NJ: Princeton University Press, 2005 |
| [5] | Bourgain J, Goldstein M. On nonperturbative localization with quasi-periodic potential. Ann of Math, 2000, 152(3): 835-879 |
| [6] | Bourgain J, Goldstein M, Schlag W. Anderson localization for Schr?dinger operators on $ \mathbb{Z} $ with potentials given by the skew-shift. Comm Math Phys, 2001, 220: 583-621 |
| [7] | Bourgain J, Goldstein M, Schlag W. Anderson localization for Schr?dinger operators on $ \mathbb{Z}^2 $ with quasi-periodic potential. Acta Math, 2002, 188: 41-86 |
| [8] | Bourgain J, Schlag W. Anderson localization for Schr?dinger operators on $ \mathbb{Z} $ with strongly mixing potentials. Comm Math Phys, 2000, 215(1): 143-175 |
| [9] | Bucaj V, Damanik D, Fillman J, et al. Localization for the one-dimensional Anderson model via positivity and large deviations for the Lyapunov exponent. Trans Amer Math Soc, 2019, 372(5): 3619-3667 |
| [10] | Cantero M J, Moral L, Grünbaum F A, Velázquez L. Matrix-valued Szeg? polynomials and quantum random walks. Comm Pure Appl Math, 2010, 63(4): 464-507 |
| [11] | Cantero M J, Moral L, Velázquez L. Five-diagonal matrices and zeros of orthogonal polynomials on the unit circle. Linear Algebra Appl, 2003, 362: 29-56 |
| [12] | Cedzich C, Werner A H. Anderson localization for electric quantum walks and skew-shift CMV matrices. Comm Math Phys, 2021, 387(3): 1257-1279 |
| [13] | Chulaevsky V A, Sinai Ya G. Anderson localization for the $ 1 $-D discrete Schr?dinger operator with two-frequency potential. Comm Math Phys, 1989, 125: 91-112 |
| [14] | Damanik D. Schr?dinger operators with dynamically defined potentials. Ergodic Theory Dynam Systems, 2017, 37(6): 1681-1764 |
| [15] | Damanik D, Fillman J, Lukic M, Yessen W. Characterizations of uniform hyperbolicity and spectra of CMV matrices. Discrete Contin Dyn Syst S, 2016, 9(4): 1009-1023 |
| [16] | Davis E B, Simon B. Eigenvalue estimates for non-normal matrices and the zeros of random orthogonal polynomials on the unit circle. J Approximation Theory, 2006, 141(2): 189-213 |
| [17] | Fillman J, Ong D C. Purely singular continuous spectrum for limit-periodic CMV operators with applications to quantum walks. J Funct Anal, 2017, 272(12): 5107-5143 |
| [18] | Goldstein M, Schlag W. H?lder continuity of the integrated density of the sates for quasiperodic Schr?dinger equations and averages of shifts of subharmonic functions. Ann of Math, 2001, 154(1): 155-203 |
| [19] | Guo S, Piao D. Lyapunov behavior and dynamical localization for quasi-periodic CMV matrices. Linear Algebra Appl, 2020, 606: 68-89 |
| [20] | Kingman J. Subadditive ergodic theory. Ann Probab, 1973, 1: 883-899 |
| [21] | Klein S. Anderson localization for the discrete one-dimensional quasi-periodic Schr?dinger operator with potential defined by a Gevrey-class function. J Funct Anal, 2005, 218(2): 255-292 |
| [22] | Krüger H. Orthogonal polynomials on the unit circle with Verblunsky coefficients defined by the skew-shift. Int Math Res Not, 2013, 2013(18): 4135-4169 |
| [23] | Krüger H. The spectrum of skew-shift Schr?dinger operators contains intervals. J Funct Anal, 2012, 262(3): 773-810 |
| [24] | Lagendijk A, Tiggelen B, Wiersma D. Fifty years of Anderson localization. Phys Today, 2009, 62(8): 24-29 |
| [25] | Lin Y X, Piao D X, Guo S Z. Anderson localization for the quasi-periodic CMV matrices with Verblunsky coefficients defined by the skew-shift. J Funct Anal, 2023, 285(4): 109975 |
| [26] | Simon B. Orthogonal Polynomials on the Unit Circle. Province RI: American Mathematical Society, 2005 |
| [27] | Sinai Y G. Anderson localization for one-dimensional difference Schr?dinger operator with quasiperiodic potential. J Stat Phys, 1987, 46(5/6): 861-909 |
| [28] | Tao K. Non-perturbative positive Lyapunov exponent of Schr?dinger equations and its applications to skew-shift mapping. J Differential Equations, 2019, 266(6): 3559-3579 |
| [29] | Wang F, Damanik D. Anderson localization for quasi-periodic CMV matrices and quantum walks. J Funct Anal, 2019, 276(6): 1978-2006 |
| [30] | Zhang Z. Uniform hyperbolicity and its relation with spectral analysis of 1D discrete Schr?dinger operators. J Spectr Theory, 2020, 10(4): 1471-1517 |
| [31] | Zhu X W. Localization for the random CMV matrices. J Approx Theory, 2024, 298: 106008 |