Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (2): 450-464.
Previous Articles Next Articles
Chen Zhengyan,Zhang Jiafeng*()
Received:
2024-04-09
Revised:
2024-10-15
Online:
2025-04-26
Published:
2025-04-09
Contact:
Jiafeng Zhang
E-mail:jiafengzhang@163.com
Supported by:
CLC Number:
Chen Zhengyan,Zhang Jiafeng. Ground State Solutions for a Class of Critical Kirchhoff Type Equation in $ \mathbb{R}^4$ with Steep Potential Well[J].Acta mathematica scientia,Series A, 2025, 45(2): 450-464.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bartsch T, Wang Z Q. Existence and multiplicity results for superlinear elliptic problems on $ \mathbb{R}^{N} $. Comm Partial Differential Equations, 1995, 20(9/10): 1725-1741 |
[2] | Bartsch T, Pankov A, Wang Z Q. Nonlinear Schrödinger equations with steep potential well. Commun Contemp Math, 2001, 3(4): 549-569 |
[3] | Jiang Y, Zhou H S. Schrödinger-Poisson system with steep potential well. J Differential Equations, 2011, 251(3): 582-608 |
[4] | Sun J, Chu J, Wu T F. Existence and multiplicity of nontrivial solutions for some biharmonic equations with $ p $-Laplacian. J Differential Equations, 2017, 262(2): 945-977 |
[5] | Sun J, Wu T F. Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256(4): 1771-1792 |
[6] | Alves C O, Figueiredo G M. Nonlinear perturbations of a periodic Kirchhoff equation in $ \mathbb{R}^{N} $. Nonlinear Anal, 2012, 75(5): 2750-2759 |
[7] | Wang J, Tian L, Xu J, Zhang F. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253(7): 2314-2351 |
[8] | Figueiredo G M. Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J Math Anal Appl, 2013, 401(2): 706-713 |
[9] | Kirchhoff G. Mechanik. Teubner: Leipzig, 1883 |
[10] | Azzollini A. The elliptic Kirchhoff equation in $ \mathbb{R}^N$ perturbed by a local nonlinearity. Differ Integral Equ, 2012, 25(5/6): 543-554 |
[11] | Bernstein S. Sur une classe d'équations fonctionnelles aux dérivées partielles. Bull Acad Sci URSS Sér Math, 1940, 4(1): 17-26 |
[12] | Pohožaev S I. A certain class of quasilinear hyperbolic equations. Mat Sb, 1975, 96(138): 152-166 |
[13] | Lions J L. On some questions in boundary value problems of mathematical physics. North-Holland Math Stud, 1978, 30: 284-346 |
[14] | He X M, Zou W M. Ground states for nonlinear Kirchhoff equations with critical growth. Ann Mat Pura Appl, 2014, 193(2): 473-500 |
[15] | Wang J, Tian L, Xu J, Zhang F. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253(7): 2314-2351 |
[16] | Chen C, Kuo Y, Wu T. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J Differential Equations, 2011, 250(4): 1876-1908 |
[17] | Huang Y, Liu Z, Wu Y. On Kirchhoff type equations with critical Sobolev exponent. J Math Anal Appl, 2018, 462(1): 483-504 |
[18] | Naimen D. The critical problem of Kirchhoff type elliptic equations in dimension four. J Differential Equations, 2014, 257(4): 1168-1193 |
[19] | Luo L P, Tang C L. Existence and concentration of ground state solutions for critical Kirchhoff-type equation with steep potential well. Complex Var Elliptic Equ, 2022, 67(7): 1756-1771 |
[20] | Zeng L, Huang Y S. A remark on Kirchhoff-type equations in $ \mathbb{R}^4 $ involving critical growth. Complex Var Elliptic Equ, 2022, 67(4): 789-806 |
[21] | Willem M. Minimax Theorems. Boston: Birkhäuser, 1996 |
[22] | Brézis H, Nirenberg L. Positive soluticns of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983 36(4): 437-477 |
[23] | Li G B, Ye H Y. Existence of positive solutions for nonlinear Kirchhoff type problems in $ \mathbb{R}^3 $ with critical Sobolev exponent. Math Meth Appl Sci, 2014, 37(16): 2570-2584 |
[24] | Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486-490 |
|