| [1] | Bartsch T, Wang Z Q. Existence and multiplicity results for superlinear elliptic problems on $ \mathbb{R}^{N} $. Comm Partial Differential Equations, 1995, 20(9/10): 1725-1741 |
| [2] | Bartsch T, Pankov A, Wang Z Q. Nonlinear Schr?dinger equations with steep potential well. Commun Contemp Math, 2001, 3(4): 549-569 |
| [3] | Jiang Y, Zhou H S. Schr?dinger-Poisson system with steep potential well. J Differential Equations, 2011, 251(3): 582-608 |
| [4] | Sun J, Chu J, Wu T F. Existence and multiplicity of nontrivial solutions for some biharmonic equations with $ p $-Laplacian. J Differential Equations, 2017, 262(2): 945-977 |
| [5] | Sun J, Wu T F. Ground state solutions for an indefinite Kirchhoff type problem with steep potential well. J Differential Equations, 2014, 256(4): 1771-1792 |
| [6] | Alves C O, Figueiredo G M. Nonlinear perturbations of a periodic Kirchhoff equation in $ \mathbb{R}^{N} $. Nonlinear Anal, 2012, 75(5): 2750-2759 |
| [7] | Wang J, Tian L, Xu J, Zhang F. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253(7): 2314-2351 |
| [8] | Figueiredo G M. Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J Math Anal Appl, 2013, 401(2): 706-713 |
| [9] | Kirchhoff G. Mechanik. Teubner: Leipzig, 1883 |
| [10] | Azzollini A. The elliptic Kirchhoff equation in $ \mathbb{R}^N$ perturbed by a local nonlinearity. Differ Integral Equ, 2012, 25(5/6): 543-554 |
| [11] | Bernstein S. Sur une classe d'équations fonctionnelles aux dérivées partielles. Bull Acad Sci URSS Sér Math, 1940, 4(1): 17-26 |
| [12] | Poho?aev S I. A certain class of quasilinear hyperbolic equations. Mat Sb, 1975, 96(138): 152-166 |
| [13] | Lions J L. On some questions in boundary value problems of mathematical physics. North-Holland Math Stud, 1978, 30: 284-346 |
| [14] | He X M, Zou W M. Ground states for nonlinear Kirchhoff equations with critical growth. Ann Mat Pura Appl, 2014, 193(2): 473-500 |
| [15] | Wang J, Tian L, Xu J, Zhang F. Multiplicity and concentration of positive solutions for a Kirchhoff type problem with critical growth. J Differential Equations, 2012, 253(7): 2314-2351 |
| [16] | Chen C, Kuo Y, Wu T. The Nehari manifold for a Kirchhoff type problem involving sign-changing weight functions. J Differential Equations, 2011, 250(4): 1876-1908 |
| [17] | Huang Y, Liu Z, Wu Y. On Kirchhoff type equations with critical Sobolev exponent. J Math Anal Appl, 2018, 462(1): 483-504 |
| [18] | Naimen D. The critical problem of Kirchhoff type elliptic equations in dimension four. J Differential Equations, 2014, 257(4): 1168-1193 |
| [19] | Luo L P, Tang C L. Existence and concentration of ground state solutions for critical Kirchhoff-type equation with steep potential well. Complex Var Elliptic Equ, 2022, 67(7): 1756-1771 |
| [20] | Zeng L, Huang Y S. A remark on Kirchhoff-type equations in $ \mathbb{R}^4 $ involving critical growth. Complex Var Elliptic Equ, 2022, 67(4): 789-806 |
| [21] | Willem M. Minimax Theorems. Boston: Birkh?user, 1996 |
| [22] | Brézis H, Nirenberg L. Positive soluticns of nonlinear elliptic equations involving critical Sobolev exponent. Comm Pure Appl Math, 1983 36(4): 437-477 |
| [23] | Li G B, Ye H Y. Existence of positive solutions for nonlinear Kirchhoff type problems in $ \mathbb{R}^3 $ with critical Sobolev exponent. Math Meth Appl Sci, 2014, 37(16): 2570-2584 |
| [24] | Brézis H, Lieb E. A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88(3): 486-490 |