| [1] | Andrade I, Marques M A, Menezes R. Flat and bent branes in Born-Infeld-like scalar field models. Eur Phys J C, 2024, 84(1): Article 6 | | [2] | Bogomol'nyi E B. The stability of classical solutions. Sov J Nucl Phys, 1976, 24(4): 449-454 | | [3] | Bolognesi S, Chatterjee C C, Gudnason S B, et al. Vortex zero modes, large flux limit and Ambj?rn-Nielsen-Olesen magnetic instabilities. J High Energy Phys, 2014, 2014(10): 1-21 | | [4] | Born M. Modified field equations with a finite radius of the electron. Nature, 1933, 132: Article 282 | | [5] | Born M. On the quantum theory of the electromagnetic field. Proc R Soc Lond A, 1934, 143(849): 410-437 | | [6] | Born M, Infeld L. Foundation of the new field theory. Nature, 1933, 132: 1004 | | [7] | Born M, Infeld L. Foundation of the new field theory. Proc R Soc Lond A, 1934, 144(852): 425-451 | | [8] | Callan Jr C G, Maldacena J M. Brane dynamics from the Born-Infeld action. Nucl Phys B, 1998, 513(1/2): 198-212 | | [9] | Cao L, Chen S, Yang Y. Domain wall solitons arising in classical gauge field theories. Commun Math Phys, 2019, 369(1): 317-349 | | [10] | Chen X, Elliott C M, Tang Q. Shooting method for vortex solutions of a complex-valued Ginzburg-Landau equation. Proc. Roy Soc Edin A, 1994, 124(6): 1075-1088 | | [11] | Chen G, Ma T P, N'Diaye A T, et al. Tailoring the chirality of magnetic domain walls by interface engineering. Nat Commun, 2013, 4(1): 1-6 | | [12] | Chen G, Zhu J, Quesada A, et al. Novel chiral magnetic domain wall structure in Fe/Ni/Cu(001) films. Phys Rev Lett, 2013, 110(17): 177204 | | [13] | Chen S, Hastings S, McLeod J B, et al. A nonlinear elliptic equation arising from gauge field theory and cosmology. Proc R Soc Lond A, 1994, 446(1982): 453-478 | | [14] | Dodd R K, Eilbeck J C, Gibbon J D, et al. Solitons and Nonlinear Wave Equations. London: Academic Press, 1982 | | [15] | Faddeev L D, Korepin V E. Quantum theory of solitons. Phys Rep, 1978, 42(1): 1-87 | | [16] | Gibbons G W. Born-Infeld particles and Dirichlet $p$-branes. Nucl Phys B, 1998, 514(3): 603-639 | | [17] | Hu Y, Koutrolikos K. Nonlinear $\mathcal{N}=2$ supersymmetry and 3D supersymmetric Born-Infeld theory. Nucl Phys B, 2022, 984: Article 115970 | | [18] | Hubert A, Sch?fer R. Magnetic Domains:The Analysis of Magnetic Microstructures. Berlin:Springer, 2009 | | [19] | Jaffe A, Taubes C H. Vortices and Monopoles. Boston: Birkh?user, 1980 | | [20] | Landau L, Lifshitz E. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys Z Sowjetunion, 1935, 8: 153-169 | | [21] | Li Z D, Hu Y C, He P B, et al. Domain wall dynamics in magnetic nanotubes driven by an external magnetic field. Chin Phys B, 2018, 27(7): 077505 | | [22] | Liouville J. Sur l'êquation aux différences partielles $\frac{\text{d}^2 \log \lambda}{\text{d} u \text{d} v}\pm\frac{\lambda}{2a^2}=0$. J Math Pures Appl, 1853, 18: 71-72 | | [23] | Liu L, Chen W X, Wang R Q, et al. Influence of spin-orbit coupling on spin-polarized electronic transport in magnetic semiconductor nanowires with nanosized sharp domain walls. Chin Phys B, 2018, 27(4): Article 047201 | | [24] | Manton N S. Five vortex equations. J Phys A, 2017, 50(12): 125403 | | [25] | Nielsen H B, Olesen P. Vortex line models for dual strings. Nucl Phys B, 1973, 61: 45-61 | | [26] | Rajaraman R. Solitons and Instantons: An Introduction to Solitons and Instantons in Quantum Field Theory. Amsterdam: North-Holland, 1989 | | [27] | Spaldin N A. Magnetic Materials:Fundamentals and Applications. Cambridge: Cambridge University Press, 2010 | | [28] | Tseytlin A A. Born-Infeld Action, Supersymmetry and String Theory. Singapore: World Scientific, 2000 | | [29] | Yang Y. Classical solutions in the Born-Infeld theory. Proc R Soc Lond A, 2000, 456(1995): 615-640 | | [30] | Yang Y. Dyonically charged black holes arising in generalized Born-Infeld theory of electromagnetism. Ann Phys, 2022, 443: Article 168996 | | [31] | Yang Y. Electromagnetic asymmetry, relegation of curvature singularities of charged black holes, and cosmological equations of state in view of the Born-Infeld theory. Class Quant Grav, 2022, 39(19): Article 195007 | | [32] | Yang Y. Dyonic matter equations, exact point-source solutions, and charged black holes in generalized Born-Infeld theory. Phys Rev D, 2023, 107(8): Article 085007 |
|