| [1] | 庞善起, 张应山. 正交表的乘法. 数学物理学报, 2007, 27A(3): 568-576 | | [1] | Zhang Y S. Multiplication of orthogonal arrays. Acta Math Sci, 2007, 27A(3): 568-576 | | [2] | Hedayat A S, Sloane N J A, Stufken J. Orthogonal Arrays:Theory and Applications. New York: Springer, 1999 | | [3] | Rao C R. Factorial experiments derivable from combinatorial arrangements of arrays. J R Stat Soc, 1947, 9(1): 128-139 | | [4] | 罗纯. 广义差集矩阵理论和正交表构造. 北京: 科学出版社, 2015 | | [4] | Luo C. Generalized Difference Set Matrix Theory and Orthogonal Array Construction. Beijing: Science Press, 2015 | | [5] | 茆诗松, 周纪芗, 陈颖. 试验设计. 北京: 中国统计出版社, 2004 | | [5] | Zhou J X, Chen Y. Experiment Design. Beijing: China Statistics Press, 2004 | | [6] | Arnaud L, Cerf N J. Exploring pure quantum states with maximally mixed reductions. Phys Rev A, 2013, 87(1): Article 012319 | | [7] | Kim H J, Lee Y. $t$-CIS codes over GF($p$) and orthogonal arrays. Discrete Appl Math, 2017, 217(3): 601-612 | | [8] | 聂嘉乐, 余旌胡. 一类受随机扰动的动态优化问题的环境检测与响应. 数学物理学报, 2022, 42A(5): 1560-1574 | | [8] | Nie J L, Yu J H. Environmental detection and response to a kind of dynamic optimization problem subjected to random disturbance. Acta Math Sci, 2022, 42A(5): 1560-1574 | | [9] | Du J, Fu S J, Qu L J, et al. New constructions of $q$-variable $1$-resilient rotation symmetric functions over $F_{p}$. Sci China Inf Sci, 2016, 59: Article 079102 | | [10] | Aggarwal M L, Budhraja V. On construction of some new symmetric and asymmetric orthogonal arrays. JDMSC, 2002, 5(3): 215-225 | | [11] | Bierbrauer J. Introduction to Coding Theory. Boca Raton, FL: Chapman and Hall/CRC, 2016 | | [12] | Stinson D R. Combinatorial Designs. New York: Springer, 2004 | | [13] | Antonio J D S, Andrea L, Fabio Z. Symplectic duality between complex domains. Monatsh Math, 2010, 160(4): 403-428 | | [14] | 管乾清, 开晓山, 朱士信. $F_{4^{m}}$ 上厄米特自正交常循环码. 电子学报, 2017, 45(6): 1469-1474 | | [14] | Kai X S, Zhu S X. Hermitian self-orthogonal constacyclic codes over $F_{4^{m}}$. Acta Ecol Sin, 2017, 45(6): 1469-1474 | | [15] | 冯克勤, 陈豪. 量子纠错码. 北京: 科学出版社, 2010 | | [15] | Chen H. Quantum Error Correction Codes. Beijing: Science Press, 2010 | | [16] | Qin H, Li D. Connection between uniformity and orthogonality for symmetrical factorial designs. J Stat Plan Infer, 2006, 136(8): 2770-2782 | | [17] | Sun F S, Liu M Q, Lin D K J. Construction of orthogonal Latin hypercube designs. Biometrika, 2009, 96(4): 971-974 | | [18] | Mukerjee R, Sun F S, Tang B. Nearly orthogonal arrays mappable into fully orthogonal arrays. Biometrika, 2014, 101(4): 957-963 | | [19] | Pang S Q, Wang X N, Wang J, et al. Construction and count of $1$-resilient rotation symmetric boolean functions. Inf Sci, 2018, 450: 336-342 | | [20] | Fang K T, Li R Z, Sudjianto A. Design and Modeling for Computer Experiments. Boca Raton, FL: Chapman and Hall/CRC, 2005 | | [21] | Ji L J, Yin J X. Constructions of new orthogonal arrays and covering arrays of strength three. J Comb Theory Ser A, 2010, 117(3): 236-247 | | [22] | Goyeneche D, Bielawski J, Zyczkowski K. Multipartite entanglement in heterogeneous systems. Phys Rev A, 2016, 94(1): Article 012346 | | [23] | Bouwmeester D, Pan J W, Mattle K, et al. Experimental quantum teleportation. Nature, 1997, 390: 575-579 | | [24] | Goyeneche D, Raissi Z, Martino S D, et al. Entanglement and quantum combinatorial designs. Phys Rev A, 2018, 97(6): Article 062326 | | [25] | Goyeneche D, Zyczkowski K. Genuinely multipartite entangled states and orthogonal arrays. Phys Rev A, 2014, 90(2): Article 022316 | | [26] | Jozsa R, Linden N. On the role of entanglement in quantum-computational speed-up. Proc R Soc A, 2003, 459(2036): 2011-2032 | | [27] | Li M, Wang Z, Wang J, et al. The norms of Bloch vectors and classification of four qudits quantum states. Europhysic Letters, 2019, 125(2): Article 20006 | | [28] | Wang Y, Fang K T. A note on uniform distribution and experimental design. Kexue Tongbao, 1981, 26(6): 485-489 | | [29] | 周永道, 刘幼妹. 非同构饱和正交设计的最小矩混杂优势准则. 数学物理学报, 2009, 29A(5): 1145-1152 | | [29] | Zhou Y D, Liu Y M. Minimum moment aberration majorization in non-isomorphic asymmetrical saturated designs. Acta Math Sci, 2009, 29A(5): 1145-1152 | | [30] | Schoen E D, Eendebak P T, Man M V M. Complete enumeration of pure-level and mixed-level orthogonal arrays. J Comb Des, 2010, 18(2): 123-140 | | [31] | Pang S Q, Chen L Y. Generalized Latin matrix and construction of orthogonal arrays. Acta Math Appl Sin, 2017, 33(4): 1083-1092 | | [32] | Colbourn C J, Stinson D R, Veitch S. Constructions of optimal orthogonal arrays with repeated rows. Discrete Math, 2019, 342(9): 2455-2466 | | [33] | Stinson D R. Bounds for orthogonal arrays with repeated rows. Bull Inst Combin Appl, 2019, 85: 60-73 | | [34] | Plackett R L, Burman J P. The design of optimum multifactorial experiments. Biometrika, 1946, 33(4): 305-325 | | [35] | Bird E M, Street D J. $D$-optimal asymmetric orthogonal array plus $p$ run designs. J Stat Plan Infer, 2016, 170: 64-76 | | [36] | Pang S Q, Zhang X, Lin X, et al. Two and three-uniform states from irredundant orthogonal arrays. npj Quantum Information, 2019, 5(52): 1-10 | | [37] | Fisher R A. An examination of the different possible solutions of a problem in incomplete blocks. Ann Eugen, 1940, 10: 52-75 | | [38] | Johnson S M. A new upper bound for error-correcting codes. IRE Trans, 1962, 8: 203-207 | | [39] | Ray-Chaudhuri D K, Wilson R M. On $t$-designs. Osaka J Math, 1975, 12(3): 737-744 | | [40] | Wilson R M. Inequalities for $t$-designs. J Comb Theory Ser A, 1983, 34(3): 313-324 | | [41] | Wilson R M. Incidence matrices of $t$-designs. Linear Algebra Appl, 1982, 46: 73-82 | | [42] | Cheng C S. Orthogonal arrays with variable numbers of symbols. Ann Stat, 1980, 8(2): 447-453 | | [43] | Yu Z, Peng Z, Kristofer J. Optimal compound orthogonal arrays and single arrays for robust parameter design experiments. Technometrics, 2007, 49(4): 440-453 | | [44] | El-Zanati S, Jordonh H, Seelinger G, et al. The maximum size of a partial $3$-spread in a finite vector space over GF(2). Des Codes Cryptogr, 2010, 54(2): 101-107 | | [45] | Lin C Y. Optimal blocked orthogonal arrays. J Stat Plan Infer, 2014, 145: 139-147 | | [46] | Du J, Chen Z Y, Chen G Z, et al. Constructions of optimal 2-level orthogonal arrays with repeated rows. Adv Math Commun, 2025, 19(2): 379-396 | | [47] | Stanton R G, Sprott D A. Block intersections in balanced incomplete block designs. Can Math Bull, 1964, 7, 539-548 | | [48] | Mann H B. A note on balanced incomplete block designs. Ann Math Stat, 1969, 40: 679-680 | | [49] | Montgometry D C. Design and Analysis of Experiments. New York: Springer Verlag, 1976 | | [50] | Culus J F, Toulouse S. How far from a worst solution a random solution of a $k$ CSP instance can be? Lecture Notes in Comput. Sci, 2018, 10979: 374-386 | | [51] | Mukerjee R, Qian P Z G, Wu C F J. On the existence of nested orthogonal arrays. Discrete Math, 2008, 308(20): 4635-4642 | | [52] | Du J, Wen Q Y, Zhang J, et al. New construction of symmetric orthogonal arrays of strength $t$. IEICE Trans Fundamentals, 2013, 96(9): 1901-1904 | | [53] | Mukerjee R, Wu C F J. On the existence of saturated and nearly saturated asymmetrical orthogonal arrays. Ann Stat, 1995, 23(6): 2102-2115 | | [54] | Zhang Y L. On schematic orthogonal arrays of strength two. Ars Comb, 2009, 91: 147-163 | | [55] | Pang S Q, Yan R, Li S. Schematic saturated orthogonal arrays obtained by using the contractive replacement method. Commun Stat-Theor M, 2017, 46(18): 8913-8924 | | [56] | Boyvalenkov P, Marinova T, Stoyanova M. Nonexistence of a few binary orthogonal arrays. Discrete Appl Math, 2017, 217(2): 144-150 | | [57] | Pang S Q, Zhang X, Zhang Q J. The hamming distances of saturated asymmetrical orthogonal arrays with strength 2. Commun Stat-Theor M, 2020, 49(16): 3895-3910 | | [58] | 杨子胥. 正交表的构造. 济南: 山东人民出版社, 1978 | | [58] | The Construction of Orthogonal Array. Jinan: Shandong People's Publishing House, 1978 | | [59] | 庞善起. 正交表的构造方法及其应用. 成都: 电子科技大学出版社, 2004 | | [59] | The Construction Method and Application of Orthogonal Array. Chengdu: University of Electronic Science and Technology of China Press, 2004 |
|