Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (4): 1023-1040.

Previous Articles     Next Articles

The Study on Spectral Structure of Planar Self-Similar Measures with Four Element Digit Sets

Lü Jun()   

  1. College of Mathematics and Physics, XinJiang Agricultural University, Urumqi 830052
  • Received:2024-08-26 Revised:2025-01-26 Online:2025-08-26 Published:2025-08-01
  • Supported by:
    NSFC(12371087);Basic Research Funds for Autonomous Region Universities Research Projects(XJEDU2025P045)

Abstract:

Let $Q=\begin{pmatrix} b & 0\\ 0 & b \end{pmatrix}$ be an integer expanding matrix and let $\mathcal{D}=\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\begin{pmatrix} 1 \\ 0 \end{pmatrix},\begin{pmatrix} 0 \\ 1 \end{pmatrix},\begin{pmatrix} -1 \\ -1 \end{pmatrix} \right\}$ be a four element digit set. We considered the spectral structure of self-similar measure $\mu_{Q,\mathcal{D}}$ which generated by an integer expanding matrix $Q$ and a four element digits $\mathcal{D}$. It is well known that $\mu_{Q,\mathcal{D}}$ is a spectral measure if and only if $b=2q$ for some $q\in\mathbb{N}$. The spectrum for this spectral measure is the following set

$\Lambda(Q,\mathcal{C}_q)=\left\{\sum_{k=0}^{n}Q^{k}\mathcal{C}_{q}:\,\,n\geq 1\right\}:=\mathcal{C}_{q}+Q\mathcal{C}_{q}+Q^{2}\mathcal{C}_{q}+\cdots,\,\,\text{all}\,\,\text{finite}\,\,\text{sums},$

where $\mathcal{C}_{q}=q\left\{\begin{pmatrix} 0 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 1 \\ 0 \end{pmatrix},\,\,\begin{pmatrix} 0 \\ 1 \end{pmatrix},\,\,\begin{pmatrix} 1 \\ 1 \end{pmatrix} \right\}$. In this paper, we investigate the structure of the maximum orthogonal set of $\mu_{Q,\mathcal{D}} $ through the maximum tree mapping and based on this, the relevant issues of its spectral eigenmatrix were discussed.

Key words: maximum tree mapping, spectral eigenmatrix, spectral measure, spectral structure, self-similar measure

CLC Number: 

  • O174.2
Trendmd