[1] |
An L X, He X G, Tao L. Spectrality of the planar Sierpinski family. J Math Anal Appl, 2015, 4.2(2): 725-732
|
[2] |
Chen M L, Yan Z H. On the spectrality of self-affine measures with four digits on $\mathbb{R}^{2}$. Internat J Math, 2021, 32(1): 215004
|
[3] |
Chen S, Tang M W. Spectrality and non-spectrality of planar self-similar measures with four-element digit sets. Fractals, 2020, 28(7):2050130
|
[4] |
Dai X R. When does a Bernoulli convolution admit a spectrum? Adv Math, 2012, 2.1(3/4): 1681-1693
|
[5] |
Dai X R. Spectra of Cantor measures. Math Ann, 2016, 3.6(3): 1621-1647
|
[6] |
Dai X R, He X G, Lai C K. Spectral property of Cantor measures with consecutive digits. Adv Math, 2013, 2.2: 187-208
|
[7] |
Dai X R, He X G, Lau K S. On spectral N-Bernoulli meausure. Adv Math, 2014, 2.9: 511-531
|
[8] |
Dai X R, Fu X Y, Yan Z H. Spectrality of self-affine Sierpinski-type measures on $\mathbb{R}^2$. Appl Comput Harmon Anal, 2020, 52: 63-81
|
[9] |
Deng Q R, Lau K S. Sierpinski-type spectral self-similar measures. J Funct Anal, 2015, 2.9(5): 1310-1326
|
[10] |
Dutkay D, Jorgensen P. Fourier series on fractals: a parallel with wavelet theory. Contemp Math, 2008, 4.4: 75-101
|
[11] |
Dutkay D, Haussermann J, Lai C K. Hadamard triples generate self-affine spectral measures. Trans Amer Math Soc, 2019, 3.1(2): 1439-1481
|
[12] |
Dutkay D, Han D G, Sun Q Y. On the spectra of a Cantor measure. Adv Math, 2009, 2.1(1): 251-276
|
[13] |
Dutkay D, Lai C K. Uniformity of measures with Fourier frames. Adv Math, 2014, 2.2: 684-707
|
[14] |
He X G, Lai C K, Lau K S. Exponential spectra in $L^2(\mu)$. Appl Comput Harmon Anal, 2013, 34(3): 327-338
|
[15] |
He X G, Tang M W, Wu Z Y. Spectral structure and spectral eigenvalue problems of a class of self-similar spectral measures. J Funct Anal, 2019, 2.7(10): 3688-3722
|
[16] |
Jorgensen P, Pedersen S. Dense analytic subspaces in fractal $L^2$ spaces. J Anal Math, 1998, 75: 185-228
|
[17] |
Jorgensen P, Kornelson K, Shuman K. Affine systems: asymptotics at infinity for fractal measures. Acta Appl Math, 2007, 98: 181-222
|
[18] |
Łaba, Wang Y. On spectral Cantor measures. J Funct Anal, 2002, 1.3: 409-420
|
[19] |
Li J J, Wu Z Y. On spectral structure and spectral eigenvalue problems for a class of self similar spectral measure with product form. Nonlinearity, 2022, 35: 3095-3117
|
[20] |
Li J L. Spectra of a class of self-affine measures. J Funct Anal, 2011, 2.0: 1086-1095
|
[21] |
Li H X, Li Q. Spectral structure of planar self-similar measures with four-element digit set. J Math Anal Appl, 2022, 5.3(1): 126202
|