| [1] | Dinh N, Goberna M A, López M A, et al. New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim Calc Var, 2007, 13(3): 580-597 | | [2] | Dinh N, Goberna M A, Lopez M A, et al. Relaxed Lagrangian duality in convex infinite optimization: reverse strong duality and optimality. arXiv: 2106.09299 | | [3] | Bo? R I, Grad S M, Wanka G. On strong and total Lagrange duality for convex optimization problems. Math Anal Appl, 2008, 3.7(2): 1315-1325 | | [4] | Bo? R I, Wanka G. A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal, 2006, 64(12): 2787-2804 | | [5] | Bo? R I. Conjugate Duality in Convex Optimization. Berlin: Springer-Verlag, 2009 | | [6] | Bo? R I, Grad S M, Wanka G. New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces. Nonlinear Anal, 2008, 69(1): 323-336 | | [7] | Goberna M A, Jeyakumar V, López M A. Necessary and sufficient constraint qualifications for solvability of systems of infinite convex inequalities. Nonlinear Anal, 2008, 68(5): 1184-1194 | | [8] | Li C, Ng K F, Pong T K. Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J Optim, 2008, 19(1): 163-187 | | [9] | Fang D H, Li C, Ng K F. Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20(3): 1311-1332 | | [10] | Fang D H, Li C, Ng K F. Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming. Nonlinear Anal, 2010, 73(5): 1143-1159 | | [11] | 王娇浪, 方东辉. 一类非凸约束优化问题的近似最优性条件及其混合型对偶. 数学物理学报, 2022, 42A(3): 651-660 | | [11] | Wang J L, Fang D H. Approximate optimality conditions and mixed type duality for a class of non-convex optimization problems. Acta Math Sci, 2022, 42A(3): 651-660 | | [12] | Fajardo M D. Regularity conditions for strong duality in evenly convex optimization problems: An application to Fenchel duality. J Convex Anal, 2015, 22(3): 711-731 | | [13] | Fajardo M D, Vicente-Pérez J, Rodríguez M M L. Infimal convolution, c-subdifferentiability, and Fenchel duality in evenly convex optimization. Top, 2012, 20: 375-396 | | [14] | Fajardo M D, Vidal J. Stable strong Fenchel and Lagrange duality for evenly convex optimization problems. Optimization, 2016, 65(9): 1675-1691 | | [15] | Fajardo M D, Grad S M, Vidal J. New duality results for evenly convex optimization problems. Optimization, 2021, 70(9): 1837-1858 | | [16] | Fajardo M D, Vidal J. A comparison of alternative c-conjugate dual problems in infinite convex optimization. Optimization, 2017, 66(5): 705-722 | | [17] | Fajardo M D, Vidal J. Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme. J Optim Theory Appl, 2018, 1.6: 57-73 | | [18] | Fajardo M D, Rodríguez M M L, Vidal J. Lagrange duality for evenly convex optimization problems. J Optim Theory Appl, 2016, 1.8: 109-128 | | [19] | Rodríguez M M L, Vicente-Pérez J. On evenly convex functions. J Convex Anal, 2011 18(3): 721-736 | | [20] | Fajardo M D, Vidal J. On subdifferentials via a generalized conjugation scheme: an application to DC problems and optimality conditions. Set-Valued Var Anal, 2022, 30(4): 1313-1331 | | [21] | Martínez-Legaz J E, Vicente-Pérez J. The e-support function of an e-convex set and conjugacy for e-convex functions. J Math Anal Appl, 2011, 3.6(2): 602-612 |
|