| [1] |
Karpman V I. Stabilization of soliton instabilities by higher-order dispersion: Fourth-order nonlinear Schrödinger-type equations. Phys Rev E, 1996, 53(2): 1336-1339
pmid: 9964480
|
| [2] |
Bonheure D, Casteras J B, Dos Santos E M, Nascimento R. Orbitally stable standing waves of a mixed dispersion nonlinear Schrödinger equation. SIAM J Math Anal, 2018, 50(5): 5027-5071
doi: 10.1137/17M1154138
|
| [3] |
Luo T J, Zheng S J, Zhu S H. The existence and stability of normalized solutions for a bi-harmonic nonlinear Schrödinger equation with mixed dispersion. Acta Math Sci, 2023, 43B(2): 539-563
|
| [4] |
Zhu S H, Zhang J, Yang H. Limiting profile of the blow-up solutions for the fourth-order nonlinear Schrödinger equation. Dyn Partial Differ Equ, 2010, 7(2): 187-205
doi: 10.4310/DPDE.2010.v7.n2.a4
|
| [5] |
Boussaïd N, Fernández A J, Jeanjean L, Some remarks on a minimization problem associated to a fourth order nonlinear Schrödinger equation.arXiv: 1910.13177, 2019
|
| [6] |
Bonheure D, Casteras J B, Gou T X, Jeanjean L. Normalized solutions to the mixed dispersion nonlinear Schrödinger equation in the mass critical and supercritical regime. Trans Amer Math Soc, 2019, 372: 2167-2212
doi: 10.1090/tran/2019-372-03
|
| [7] |
Luo X, Yang T. Normalized solutions for a fourth-order Schrödinger equation with a positive second-order dispersion coefficient. Sci China Math, 2023, 66: 1237-1262
doi: 10.1007/s11425-022-1997-3
|
| [8] |
Fernández A J, Jeanjean L, Mandel R, Mariş M. Non-homogeneous Gagliardo-Nirenberg inequalities in $\mathbb{R}^N$ and application to a biharmonic non-linear Schrödinger equation. J Differential Equations, 2022, 330: 1-65
doi: 10.1016/j.jde.2022.04.037
|
| [9] |
Han F Y, Gao Y T, Han Z Y. Local minimizers of the mass constrained problem for the mass-supercritical bi-harmonic Schrödinger equation. Nonlinearity, 2024, 37: Art 125015
|
| [10] |
Sun J T, Yao S, Zhang H. Standing waves with prescribed mass for biharmonic NLS with positive dispersion and Sobolev critical exponent. arXiv: 2505.02042, 2025
|
| [11] |
Luo X, Yang T. Stabilization in dipolar Gross-Pitaevskii theory by mass-subcritical perturbation. J Fixed Point Theory Appl, 2023, 25: Article 28
|
| [12] |
Jeanjean L, Jendrej J, Le T T, Visciglia N. Orbital stability of ground states for a Sobolev critical Schrödinger equation. J Math Pures Appl, 2022, 164: 158-179
doi: 10.1016/j.matpur.2022.06.005
|
| [13] |
Lions P L. The concentration-compactness principle in the calculus of variations. The locally compact case.II . Ann Inst H Poincaré Anal Non Linéaire, 1984, 1: 223-283
doi: 10.4171/aihpc
|
| [14] |
Mederski J, Siemianowski J. Biharmonic nonlinear scalar field equations. Int Math Res Not, 2023, 2023: 19963-19995
doi: 10.1093/imrn/rnac303
|
| [15] |
Brézis H, Lieb E, A relation between pointwise convergence of functions and convergence of functionals. Proc Amer Math Soc, 1983, 88: 486-490
doi: 10.1090/proc/1983-088-03
|