Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 649-663.
Previous Articles Next Articles
Congcong Xu1,2,Zuoliang Xu1,*()
Received:
2017-12-28
Online:
2019-06-26
Published:
2019-06-27
Contact:
Zuoliang Xu
E-mail:xuzl@ruc.edu.cn
Supported by:
CLC Number:
Congcong Xu,Zuoliang Xu. Option Pricing Method and Parameter Calibration for Jump-Diffusion Model[J].Acta mathematica scientia,Series A, 2019, 39(3): 649-663.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
到期日 | 模型 | RMSE | ||||
Merton模型 | 0.0656 | 8.2454 | -0.0341 | 0.0440 | 0.8416 | |
Black-Scholes模型 | 0.1247 | 2.8718 | ||||
Merton模型 | 0.0520 | 5.9989 | -0.0388 | 0.0396 | 0.3094 | |
Black-Scholes模型 | 0.1136 | 4.9638 | ||||
Merton模型 | 0.0648 | 1.6550 | -0.0998 | 0.0176 | 0.2825 | |
Black-Scholes模型 | 0.1164 | 6.2999 | ||||
Merton模型 | 0.0662 | 0.8905 | -0.1412 | 0.0467 | 0.5395 | |
Black-Scholes模型 | 0.1252 | 11.9545 |
1 |
Black F , Scholes M . The pricing of option and corporate liabilities. J Political Econom, 1973, 81: 637- 659
doi: 10.1086/260062 |
2 |
Merton R . Option pricing when underlying stock returns are discontinuous. J Finan Econom, 1976, 3: 125- 144
doi: 10.1016/0304-405X(76)90022-2 |
3 | Cont R , Tankov P , Voltchkova E . Option pricing models with jumps:integro-differential equations and inverse problems. European Congress on Computational Methods in Applied Sciences and Engineering, 2004, 1- 20 |
4 | Delbaen F , Schachermayer W . The fundamental theorem of asset pricing for unbounded stochastic processes. Math Anna, 1996, 312: 215- 250 |
5 |
Yao L G , Yang G , Yang X Q . A note on the mean correcting martingale measure for geometric Lévy processes. Appl Math Lett, 2011, 24: 593- 597
doi: 10.1016/j.aml.2010.11.011 |
6 | Carr P , Madan D . Option valution using the fast Fourier transform. J Comput Finance, 1999, 3: 463- 520 |
7 | Fang F , Oosterlee C W . A novel option pricing method based on Fourier-cosine series expansions. SIAM J Sci Comput, 2008, 31: 826- 848 |
8 | Cont R , Tankov P . Financial Modelling with Jump Processes. New York: Chapman & Hall/CRC Press, 2004 |
9 |
Cont R , Tankov P . Calibration of jump-diffusion option pricing models:A robust non-parametric approach. SSRN Electronic J, 2002
doi: 10.2139/ssrn.332400 |
10 | Cont R , Tankov P . Non-parametric calibration of jump-diffusion option pricing models. J Comput Finance, 2004, 7: 1- 49 |
11 | Schoutens W . Lévy Process in Finance:Pricing Financial Derivatives. New York: Wiley, 2003 |
12 | Miyahara Y. Martingale measures for the geometric lévy process models. Discussion Papers in Economics, Nagoya City University, 2005, 431:1-14 |
[1] | Wang Huinan, Han Huan. Multi-Scale Approach for Diffeomorphic Image Registration with Fractional-Order Regularization Based on Quasiconformal Theory [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1665-1688. |
[2] | Zhang Xiao, Zhang Hongwu. Fractional Tikhonov Regularization Method for an Inverse Boundary Value Problem of the Fractional Elliptic Equation [J]. Acta mathematica scientia,Series A, 2024, 44(4): 978-993. |
[3] | Yao Luogen,Liu Huan,Chen Qiqiong. Application of VG Distortion Operator in Option Pricing [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1575-1584. |
[4] | Yang Fan, Cao Ying, Li Xiaoxiao. Identification of Initial Values of Space-Time Fractional Diffusion-Wave Equation [J]. Acta mathematica scientia,Series A, 2023, 43(2): 377-398. |
[5] | Shengliang Zhang,Junxian Huang. A High Order MQ Quasi-Interpolation Method for Time Fractional Black-Scholes Model [J]. Acta mathematica scientia,Series A, 2022, 42(5): 1496-1505. |
[6] | Hongwu Zhang. One Regularization Method for a Cauchy Problem of Semilinear Elliptic Equation [J]. Acta mathematica scientia,Series A, 2022, 42(1): 45-57. |
[7] | Qingchun Meng,Lei Zhang. Numerical Solution of the Three-Dimensional Inverse Heat Conduction Problems [J]. Acta mathematica scientia,Series A, 2022, 42(1): 187-200. |
[8] | Fan Yang,Qianchao Wang,Xiaoxiao Li. Fractional Landweber Iterative Regularization Method to Identify Source Term for the Rayleigh-Stokes Equation [J]. Acta mathematica scientia,Series A, 2021, 41(2): 427-450. |
[9] | Lixin Feng,Xiaoxu Yang. Spectral Regularization Method for Volterra Integral Equation of the First Kind with Noise Data [J]. Acta mathematica scientia,Series A, 2020, 40(3): 650-661. |
[10] | Zhenyu Zhao,Riguang Lin,Zhi Li,Duan Mei. A Super Order Regularization Method for Determination of an Unknown Source in the Heat Equation [J]. Acta mathematica scientia,Series A, 2020, 40(3): 717-724. |
[11] | Luogen Yao,Gang Yang,Xiangqun Yang. Mean Correcting Martingale Measure for Exponential Semimartingale Market Models [J]. Acta mathematica scientia,Series A, 2019, 39(4): 932-941. |
[12] | Xie Ou, Meng Zehong, Zhao Zhenyu, You Lei. A Truncation Method Based on Hermite Functions Expansion for a Cauchy Problem of the Laplace Equation [J]. Acta mathematica scientia,Series A, 2017, 37(3): 457-468. |
[13] | XIAO Shuang, JIAN Ming, CHEN Ai-Xiang, JIAN Bei. Fuzzy Pricing Formula for European Options with Jumps and Transaction Costs [J]. Acta mathematica scientia,Series A, 2015, 35(1): 118-130. |
[14] | YANG Fan, FU Chu-Li, LI Xiao-Xiao. The Fourier Regularization Method for Identifying the Unknown Source for the Modified Helmholtz Equation [J]. Acta mathematica scientia,Series A, 2014, 34(4): 1040-1047. |
[15] | ZHAO Zhen-Yu, YOU Lei. A Modified Tikhonov Regularization Method for Identifying an Unknown Source in the Heat Equation [J]. Acta mathematica scientia,Series A, 2014, 34(1): 186-192. |
|