Acta mathematica scientia,Series A ›› 2019, Vol. 39 ›› Issue (3): 664-673.
Previous Articles Next Articles
Received:
2018-02-01
Online:
2019-06-26
Published:
2019-06-27
Supported by:
CLC Number:
Ming Han. E-Bayesian Estimation and Its E-MSE of Poisson Distribution Parameter Under Different Loss Functions[J].Acta mathematica scientia,Series A, 2019, 39(3): 664-673.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
"
20 | 40 | 60 | 80 | 100 | |
0.5074 | 0.5057 | 0.5049 | 0.5022 | 0.5015 | |
0.4873 | 0.4932 | 0.4966 | 0.4960 | 0.4964 | |
0.4636 | 0.4810 | 0.4884 | 0.4898 | 0.4915 | |
E-MSE | 0.0250 | 0.0125 | 0.0083 | 0.0062 | 0.0048 |
E-MSE | 0.0256 | 0.0126 | 0.0084 | 0.0063 | 0.0050 |
E-MSE | 0.0274 | 0.0131 | 0.0086 | 0.0064 | 0.0051 |
"
20 | 40 | 60 | 80 | 100 | |
0.9977 | 1.0003 | 0.9988 | 0.9997 | 0.9999 | |
0.9730 | 0.9879 | 0.9905 | 0.9936 | 0.9947 | |
0.9489 | 0.9756 | 0.9823 | 0.9874 | 0.9898 | |
E-MSE | 0.0487 | 0.0247 | 0.0165 | 0.0124 | 0.0099 |
E-MSE | 0.0493 | 0.0249 | 0.0166 | 0.0125 | 0.0100 |
E-MSE | 0.0511 | 0.0253 | 0.0168 | 0.0126 | 0.0101 |
"
20 | 40 | 60 | 80 | 100 | |
1.9735 | 1.9882 | 1.9929 | 1.9936 | 1.9941 | |
1.9489 | 1.9758 | 1.9846 | 1.9873 | 1.9891 | |
1.9247 | 1.9635 | 1.9764 | 1.9811 | 1.9841 | |
E-MSE | 0.0963 | 0.0491 | 0.0329 | 0.0247 | 0.0197 |
E-MSE | 0.0969 | 0.0492 | 0.0330 | 0.0248 | 0.0198 |
E-MSE | 0.0987 | 0.0497 | 0.0332 | 0.0249 | 0.0199 |
"
20 | 40 | 60 | 80 | 100 | |
3.9248 | 3.9617 | 3.9720 | 3.9787 | 3.9885 | |
3.9003 | 3.9493 | 3.9638 | 3.9725 | 3.9886 | |
3.8760 | 3.9370 | 3.9555 | 3.9663 | 3.9887 | |
E-MSE | 0.1915 | 0.0978 | 0.0656 | 0.0494 | 0.0395 |
E-MSE | 0.1921 | 0.0980 | 0.0657 | 0.0495 | 0.0397 |
E-MSE | 0.1939 | 0.0984 | 0.0659 | 0.0496 | 0.0398 |
"
1 | 3 | 5 | 7 | 9 | 极差 | |
2.8225089 | 2.8197148 | 2.8169281 | 2.8141487 | 2.8113765 | 0.0111324 | |
2.8220131 | 2.8192195 | 2.8164332 | 2.8136543 | 2.8108827 | 0.0111304 | |
2.8215173 | 2.8187242 | 2.8159385 | 2.8131600 | 2.8103889 | 0.0111284 | |
E-MSE | 0.0027987 | 0.0027932 | 0.0027877 | 0.0027822 | 0.0027767 | 2.20e-005 |
E-MSE | 0.0027990 | 0.0027934 | 0.0027879 | 0.0027824 | 0.0027769 | 2.21e-005 |
E-MSE | 0.0027997 | 0.0027942 | 0.0027886 | 0.0027832 | 0.0027777 | 2.20e-005 |
1 |
Ali S , Aslam M , Kazmi S M A . A study of the effect of the loss function on Bayes estimate, posterior risk and hazard function for Lindley distribution. Applied Mathematical Modelling, 2013, 37: 6068- 6078
doi: 10.1016/j.apm.2012.12.008 |
2 |
Ando T , Zellner A . Hierarchical Bayesian analysis of the seemingly unrelated regression and simultaneous equations models using a combination of direct monte carlo and importance sampling techniques. Bayesian Analysis, 2010, 5 (1): 65- 96
doi: 10.1214/10-BA503 |
3 |
Osei F B , Duker A A . Hierarchical Bayesian modeling of the space-time diffusion patterns of cholera epidemic in Kumasi, Ghana. Statistica Neerlandica, 2011, 65: 84- 100
doi: 10.1111/j.1467-9574.2010.00475.x |
4 | 韩明. 贝叶斯统计学及其应用. 上海: 同济大学出版社, 2015 |
Han Ming . Bayesian Statistics and Its Applications. Shanghai: Tongji Univ Press, 2015 | |
5 |
Han Ming . E-Bayesian estimation and hierarchical Bayesian estimation of failure rate. Applied Mathematical Modelling, 2009, 33: 1915- 1922
doi: 10.1016/j.apm.2008.03.019 |
6 |
Han Ming . E-Bayesian estimation of the reliability derived from binomial distribution. Applied Mathematical Modelling, 2011, 35: 2419- 2424
doi: 10.1016/j.apm.2010.11.051 |
7 |
Han Ming . The E-Bayesian and hierarchical Bayesian estimations of Pareto distribution parameter under different loss functions. Journal of Statistical Computation and Simulation, 2017, 87: 577- 593
doi: 10.1080/00949655.2016.1221408 |
8 |
Jaheen Z F , Okasha H M . E-Bayesian estimation for the Burr type XⅡ model based on type-2 censoring. Applied Mathematical Modelling, 2011, 35: 4730- 4737
doi: 10.1016/j.apm.2011.03.055 |
9 |
Okasha H M , Wang J . E-Bayesian estimation for the geometric model based on record statistics. Applied Mathematical Modelling, 2016, 40: 658- 670
doi: 10.1016/j.apm.2015.05.004 |
10 |
Yousefzadeh F . E-Bayesian and hierarchical Bayesian estimations for the system reliability parameter based on asymmetric loss function. Communications in Statistics-Theory and Methods, 2017, 46: 1- 8
doi: 10.1080/03610926.2014.968736 |
11 |
苏兵. Poisson分布参数的几种估计. 临沂师范学院学报, 2003, 25 (6): 21- 23
doi: 10.3969/j.issn.1009-6051.2003.06.007 |
Su Bing . Several estimates of Poisson distribution parameter. Journal of Linyi Normal University, 2003, 25 (6): 21- 23
doi: 10.3969/j.issn.1009-6051.2003.06.007 |
|
12 |
韦莹莹, 韦程东, 薛婷婷. Q-对称熵损失下Poisson分布参数倒数的估计. 广西师范学院学报(自然科学版), 2007, 24 (2): 33- 38
doi: 10.3969/j.issn.1002-8743.2007.02.008 |
Wei Yingying , Wei Chengdong , Xue Tingting . The estimation of reciprocal of distribution parameters for Poisson distribution under Q-symmetric loss function. Journal of Guangxi Teachers Education University (Natural Science Edition), 2007, 24 (2): 33- 38
doi: 10.3969/j.issn.1002-8743.2007.02.008 |
|
13 | 韦程东. 贝叶斯统计分析及其应用. 北京: 科学出版社, 2015 |
Wei C D . Bayesian Statistical Analysis and Its Application. Beijing: Science Press, 2015 | |
14 | 韩明. Poisson分布参数的E-Bayes估计及其性质. 数学物理学报, 2016, 36A (5): 1010- 1016 |
Han Ming . The E-Bayesian estimation of the parameter for Poisson distribution and its properties. Acta Math Sci, 2016, 36A (6): 1010- 1016 | |
15 | 韩明. 多层先验分布的构造及其应用. 运筹与管理, 1997, 6 (3): 31- 40 |
Han Ming . The structure of hierarchical prior distribution and its applications. Chinese Operations Research and Management Science, 1997, 6 (3): 31- 40 | |
16 | Berger J O . Statistical Decision Theory and Bayesian Analysis. New York: Springer-Verlag, 1985 |
17 | Han Ming. E-Bayesian estimation and its E-MSE under the scaled squared error loss function, for exponential distribution as example. Communications in Statistics-Simulation and Computation.[2018-02-25]. https://doi.org/10.1080/03610918.2018.1425444 |
[1] | Ming Han. E-Bayesian Estimation and E-MSE of Failure Probability and Its Applications [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1790-1801. |
[2] | Liu Huan, Wu Qiongli, Cournède Paul-Henry. Research on the Effects of Different Sampling Algorithm on Sobol Sensitivity Analysis [J]. Acta mathematica scientia,Series A, 2018, 38(2): 372-384. |
[3] | Han Ming. The E-Bayesian Estimation of the Parameter for Poisson Distribution and Its Properties [J]. Acta mathematica scientia,Series A, 2016, 36(5): 1010-1016. |
[4] | HAN Ming. Properties of E-Bayesian Estimation for the Reliability Derived form Binomial Distribution [J]. Acta mathematica scientia,Series A, 2013, 33(1): 62-70. |
[5] | HAN Ming. E-Bayesian Estimation of Failure Probability in the Case of Data Only One Failure [J]. Acta mathematica scientia,Series A, 2011, 31(2): 577-583. |
[6] | ZHOU Zai-Ying. Admissibility of Matrix Nonhomogeneous Linear Estimators in Multivariate Linear Models [J]. Acta mathematica scientia,Series A, 2010, 30(6): 1621-1628. |
[7] |
Zhang Shangli;Qin Hong.
Universal Admissibility of Linear Estimators in Growth Curve Model with Respect to Restricted Parameter Sets [J]. Acta mathematica scientia,Series A, 2008, 28(3): 523-529. |
[8] | Han Ming. Expected Bayesian Estimation of Failure Probability and Its Character [J]. Acta mathematica scientia,Series A, 2007, 27(3): 488-495. |
[9] | BAI Peng. Kullback Leibler's Divergence between Two Multivariatet Distributions [J]. Acta mathematica scientia,Series A, 2005, 25(5): 694-709. |
[10] | WEI Li-Li, ZHANG Wen-Xiu. Bayesian Procedure in Classification Problem With Linear Expon ential Hazard Function [J]. Acta mathematica scientia,Series A, 2003, 23(4): 436-443. |
[11] | Xu Xingzhong Wu Qiguang. Linear Admissible Estimators of Regression Coefficient Under Balanced Loss [J]. Acta mathematica scientia,Series A, 2000, 20(4): 468-473. |
|