| [1] | Guo Z, Li H Z. A variational problem for submanifolds in a sphere. Monatsh Math, 2007, 152: 295-302 | | [2] | Li H Z. Willmore hypersurfaces in a sphere. Asian J of Math, 2001, 5: 365-378 | | [3] | Milnor J. Eigenvalues of the Laplace operator on certain manifolds. Proc Nat Acad Sci, 1964, 51: 542 | | [4] | Ikeda A. On spherical space forms which are isospectral but not isometric. J Math Soc Japan, 1983, 35: 437-444 | | [5] | Donnelly H. Spectral invariants of the second variation operator. Illinois J Math, 1977, 21: 185-189 | | [6] | Hasegawa T. Spectral geometry of closed minimal submanifolds in a space form, real and complex. Kodai Math J, 1980, 3: 224-252 | | [7] | Ding Q. On spectral characterizations of minimal hypersurface in a sphere. Kodai Math J, 1994, 17: 320-328 | | [8] | Li Z H, Wang W. On spectral characterizations of Willmore hypersurfaces in a sphere. Appl Math J Chinese Univ, 2009, 4: 490-494 | | [9] | Yang D, Xu H, Fu H. New spectral characterizations of extremal hypersurfaces. Acta Mathematica Scientia, 2013, 33B(5): 1269-1274 | | [10] | Deng Q, Gu H, Wei Y. Closed Willmore minimal hypersurfaces with constant scalar curvature in $S^5(1)$ are isoparametric. Advances in Mathematics, 2017, 9: 278-305 | | [11] | Li P. On the spectral rigidity of Einstein-type Kahler manifolds. arXiv:math.DG 1804.00517 | | [12] | Patodi U K. Curvature of the fundamental solution of the heat operator. Boll Un Mat Ital, 1974, 10: 380-385 |
|