| [1] | Antontsev S N, Kazhikhov A V, Monakhov V N. Boundary Value Problems in Mechanics of Nonhomogeneous Fluids. New York: Elsevier, 1990 |
| [2] | Chen C Q. Global solutions to the compressible Navier-Stokes matrixs for a reacting mixture of nonlinear. SIAM J Math Anal, 1992, 23: 609-634 |
| [3] | Ducomet B. A model of thermal dissipation for a one-dimensional viscous reactive and radiative. Math Methods Appl Sci, 1999, 22: 1323-1349 |
| [4] | Jiang J, Zheng S M. Global solvability and asymptotic behavior of a free boundary problem for the one-dimensional viscous radiative and reactive gas. J Math Phy, 2012, 53 |
| [5] | Jiang S. On initial boundary value problems for a viscous heat-conducting one-dimensional real gas. J Differential Equations, 1994, 110: 157-181 |
| [6] | Kanel J I. A model system of matrixs for the one-dimensional motion of a gas. Differ Uravn, 1968, 4: 721-734 |
| [7] | Kawohl B. Global existence of large solutions to initial boundary value problems for the matrixs of one- dimensional motion of viscous polytropic gases. J Differential Equations, 1985, 58: 76-103 |
| [8] | Kawashima S, Nishida T. Global solutions to the initial value problem for the matrix of one-dimensional motion of viscous polytropic gases. J Math Kyoto Univ, 1981, 21: 825-837 |
| [9] | Kazhikhov A V. To a theory of boundary value problems for matrix of one-dimensional nonstationary motion of viscous heat-conduction gases. Boundary value problems, 1981, 50: 37-62 |
| [10] | Kazhikhov A V. Sur la solubilité global des problémes monodimensionnels aux valeurs initinales-limités pour les équations d'un gaz visqueux et calorifére. C R Acad Sci, Paris, Ser A, 1997, 284: 317-320 |
| [11] | Kazhikhov A V, Shelukhin V V. Unique global solutions with respect to time of the initial-boundary value problems for one-dimensional matrixs of a viscous gas. J Appl Math Mech, 1977, 41: 273-282 |
| [12] | Liao Y K, Zhao H J. Global solutions to one-dimensional matrixs for a self-gravitating viscous radiative and reactive gas with density-dependent viscosity. Commun Math Sci, 2017, 15: 1423-1456 |
| [13] | Nagasawa T. On the one-dimensional motion of the polytropic ideal gas non-fixed on the boundary. J differential Equations, 1986, 65: 49-67 |
| [14] | Nagasawa T. Global asymptotics of the outer pressure problem with free boundary. Japan J Appl Math, 1988, 5: 205-224 |
| [15] | Nagasawa T. On the outer pressure problem of the one-dimensional polytropic ideal gas. Japan J Appl Math, 1988, 5: 53-85 |
| [16] | Qin Y M. Nonlinear parabolic-hyperbolic coupled systems and their attractors. Basel: Birkh?user, 2008 |
| [17] | Qin Y M, Hu G L, Wang T G, Huang L. Remarks on global smooth solutions to a 1D self-gravitating viscous radiative and reactive gas. J Math Anal Appl, 2013, 408: 19-26 |
| [18] | Qin Y M, Huang L. On the 1D viscous reactive and radiative gas with the first-order Arrhenius kinetics. Math Meth Appl Sci, 2019, 42: 5969-5998 |
| [19] | Qin Y M, Liu X, Yang X. Global existence and exponential stability for a 1D compressible and radiative MHD flow. J Differential Equations, 2012, 253: 1439-1488 |
| [20] | Sun Y, Zhang J W, Zhao X K. Nonlinear exponential stability for the compressible Navier-Stokes matrixs with temperature-dependent transport coefficients. J Differential Equations, 2021, 286: 676-709 |
| [21] | Tani A. On the first initial-boundary value problem of compressible viscous fluid motion. Publ Res Inst Math Sci, 1977, 13: 193-253 |
| [22] | Umehara M, Tani A. Global solution to the one-dimensional matrixs for a self-gravitating viscous radiative and reactive gas. J Differential Equations, 2007, 234: 439-463 |
| [23] | Wang T, Zhao H J. One-dimensional compressible heat-conducting gas with temperature-dependent viscosity. Math Models Methods Appl Sci, 2016, 26: 2237-2275 |
| [24] | Zhang J W, Xie F. Global solutions for a one-dimensional model problem in thermally radiative magnetohydrodynamics. J Differential Equations, 2008, 245: 1853-1882 |