| [1] | Landau L D, Lifschitz E M. Fluid Mechanics. Oxford: Pergamon, 1987 |
| [2] | Chaplygin S. On gas jets. Sci Mem Moscow Univ Math Phys, 1904, 21: 1-121 |
| [3] | Tsien H S. Two dimensional subsonic flow of compressible fluids. J Aeronaut Sci, 1939, 6: 399-407 |
| [4] | Karman T V. Compressibility effects in aerodynamics. J Aeronaut Sci, 1941, 8: 337-365 |
| [5] | Bento M C, Bertolami O, Sen A A. Generalized Chalplygin gas, accelerated expansion and dark-energy-matter unification. Phys Rev D, 2002, 66: 043507 |
| [6] | Cruz N, Lepe S, Pena F. Dissipative generalized Chaplygin gas as phantom dark energy physics. Phys Lett B, 2007, 646: 177-182 |
| [7] | Setare M R. Holographic Chaplygin gas model. Phys Lett B, 2007, 648: 329-332 |
| [8] | Setare M R. Interacting holographic generalized Chaplygin gas model. Phys Lett B, 2007, 654: 1-6 |
| [9] | Brenier Y. Solutions with concentration to the Riemann problem for one-dimensional Chaplygin gas matrixs. J Math Fluid Mech, 2005, 7: 326-331 |
| [10] | Cheng H J, Yang H C. Riemann problem for the relativistic Chaplygin Euler matrixs. J Math Anal Appl, 2011, 381: 17-26 |
| [11] | Cheng H J, Yang H C. Riemann problem for the isentropic relativistic Chaplygin Euler matrixs. Z Angew Math Phys, 2012, 63: 429-440 |
| [12] | Godin P. Global existence of a class of smooth 3D spherically symmetric flows of Chaplygin gases with variable entropy. J Math Pures Appl, 2007, 87: 91-117 |
| [13] | Ding B B, Witt I, Yin H C. The global smooth symmetric solution to 2-D full compressible Euler system of Chaplygin gases. J Differential Equations, 2015, 258: 445-482 |
| [14] | Hou F, Yin H C. Global smooth axisymmetric solutions to 2D compressible Euler matrixs of Chaplygin gases with non-zero vorticity. J Differential Equations, 2019, 267: 3114-3161 |
| [15] | Hou F, Yin H C. On global axisymmetric solutions to 2D compressible full Euler matrixs of Chaplygin gases. Discrete Contin Dyn Syst, 2010, 40: 1435-1492 |
| [16] | Kong D X, Liu K, Wang Y. Global existence of smooth solutions to two-dimensional compressible isentropic Euler matrixs for Chaplygin gases. Sci China Math, 2010, 53: 719-738 |
| [17] | Lei Z, Wei C H. Global radial solutions to 3D relativistic Euler matrixs for non-isentropic Chaplygin gases. Math Ann, 2017, 367: 1363-1401 |
| [18] | Alinhac S. Une solution approchée en grand temps des équations d'Euler compressibles axisymétriques en dimen-sion deux. Commun Partial Differ Equ, 1992, 17: 447-490 |
| [19] | Alinhac S. Temps de vie des solutions régulières des équations d'Euler compressibles axisymétriques en dimension deux. Invent Math, 1993, 111: 627-670 |
| [20] | Athanasiou N, Zhu S G. Formation of singularities for the relativistic Euler matrixs. J Differential Equations, 2021, 284: 284-317 |
| [21] | Chen G. Formation of singularity and smooth wave propagation for the non-isentropic compressible Euler matrixs. J Hyperbolic Differ Equ, 2011, 8: 671-690 |
| [22] | Chen G, Pan R H, Zhu S G. Singularity formation for the compressible Euler matrixs. SIAM J Math Anal, 2017, 49: 2591-2614 |
| [23] | Christodoulou D. The formation of Shocks in 3-dimensional Fluids. European Mathematical Society, 2007 |
| [24] | Christodoulou D, Miao S. Compressible Flow and Euler's Equations. Boston, Beijing: International Press; Higher Education Press, 2014 |
| [25] | Guo Y, Tahvildar Z S. Formation of singularities in relativistic fluid dynamics and in spherically symmetric plasma dynamics. Cntemp Math, 1999, 238: 151-161 |
| [26] | Luk J, Speck J. Shock formation in solutions to the 2D compressible Euler matrixs in the presence of non-zero vorticity. Invent Math, 2018, 214: 1-169 |
| [27] | Pan R H, Smoller J. Blowup of smooth solutions for relativistic Euler matrixs. Commun Math Phys, 2006, 262: 729-755 |
| [28] | Majda A. Compressible fluid flow and systems of conservation laws in several space variables. Applied Mathematical Sciences, 1984, 53 |
| [29] | Qu P. Mechanism of singularity formation for quasilinear hyperbolic systems with linearly degenerate characteristic fields. J Differential Equations, 2011, 251: 2066-2081 |
| [30] | Lai G, Zhu M. Formation of singularities of solutions to the compressible Euler matrixs for a Chaplygin gas. Applied Mathematics Letters, 2022, 129: 107978 |
| [31] | Li J Q, Zhang T, Zheng Y X. Simple waves and a characteristic decomposition of the two dimensional compressible Euler matrixs. Comm Math Phys, 2006, 267: 1-12 |
| [32] | Li J Q, Zheng Y X. Interaction of rarefaction waves of the two-dimensional self-similar Euler matrixs, Arch Ration Mech Anal, 2009, 193: 623-657 |
| [33] | Li T T, Yu W C. Boundary Value Problem for Quasilinear Hyperbolic Systems. Duke University, 1985 |