Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 748-755.
Previous Articles Next Articles
Received:
2024-08-19
Revised:
2024-10-28
Online:
2025-06-26
Published:
2025-06-20
Supported by:
CLC Number:
Li Qian, Xing Yanyuan. Finite Time Blow up of Solutions for Nonlinear Wave Equation with the Damping Term at Arbitrarily Positive Initial Energy[J].Acta mathematica scientia,Series A, 2025, 45(3): 748-755.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Chen Y X, Xu R Z. Global well-posedness of solutions for fourth order dispersive wave equation with nonlinear weak damping, linear strong damping and logarithmic nonlinearity. Nonlinear Anal, 2020, 192: 1-39 |
[2] | Gazzola F, Squassina M. Global solutions and finite time blow up for damped semilinear wave equations. Ann Inst H Poincare Anal Non Lineaire, 2006, 23: 185-207 |
[3] | He L F. On decay and blow-up of solutions for a system of viscoelastic equations with weak damping and source terms. J Inequal Appl, 2019, 2019: 1-27 |
[4] | Hao J H, Wei H Y. Blow-up and global existence for solution of quasilinear viscoelastic wave equation with strong damping and source term. Bound Value Probl, 2017, 65: 1-12 |
[5] | Han X S, Wang M X. Global existence and blow up of solutions for a system of nonlinear viscoelastic wave equations with damping and source. Nonlinear Anal, 2009, 71: 5427-5450 |
[6] | Jleli M, Samet B. Blow up for semilinear wave equations with time-dependent damping in an exterior domain. Commun Pure Appl Anal, 2020, 19(7): 3885-3900 |
[7] | Liu W J. General decay and blow-up of solution for a quasilinear viscoelastic problem with nonlinear source. Nonlinear Anal: Theory Methods Appl, 2010, 73(6): 1890-1904 |
[8] | Li Q. A blow-up result for a system of coupled viscoelastic equations with arbitrary positive initial energy. Bound Value Probl, 2021, 2021: Article 61 |
[9] | Li Q, He L F. General decay and blow-up of solutions for a nonlinear viscoelastic wave equation with strong damping. Bound Value Probl, 2018, 153: 1-22 |
[10] | Lian W, Xu R Z. Global well-posedness of nonlinear wave equation with weak and strong damping terms and logarithmic source term. Adv Nonlinear Anal, 2020, 5(3): 555-573 |
[11] | Messaoudi S A. Blow up and global existence in a nonlinear viscoelastic wave equation. Math Nachr, 2003, 260: 58-66 |
[12] | Messaoudi S A. Blow up of positive initial energy solution of a nonlinear viscoelastic hyperbolic equation. J Math Anal Appl, 2006, 320: 902-915 |
[13] | Ma J, Mu C L, Rong Z. A blow up result for viscoelastic equations with arbitrary positive initial energy. Bound Value Probl, 2011, 6: 1-10 |
[14] | Payne L, Sattinger D. Saddle points and instability on nonlinear hyperbolic equation. Israel J Math, 1975, 22: 273-303 |
[15] | Song H T. Global nonexistence of positive initial energy solution for a viscoelastic wave. Nonlinear Anal, 2015, 125: 260-269 |
[16] | Song H T. Blow up of arbitrarily positive initial energy solution for a viscoelastic wave euqation. Nonlinear Anal: Real World Appl, 2015, 26: 306-314 |
[17] | Song H T, Xue D S. Blow up in a nonlinear viscoelastic wave equation with strong damping. Nonlinear Anal, 2014, 109: 245-251 |
18Song H T, Zhong C K. Blow up of solution of a nonlinear viscoelastic wave equation. Nonlinear Anal: Real World Appl, 2010, 11: 3877-3883 | |
[19] | 苏晓, 王书彬. 任意正初始能量状态下半线性波动方程解的有限时间爆破. 数学物理学报, 2017, 37A(6): 1085-1093 |
Wang S B. Finite time blow up for the damped semilinear wave equations with arbitrary positive initial energy. Acta Math Sci, 2017, 37A(6): 1085-1093 | |
[20] | Wang Y J. A global nonexistence theorem for viscoelastic equations with arbitrary positive initial energy. Appl Math Lett, 2009, 22: 1394-1400 |
[21] | Xu R Z, Lian W, Niu Y. Global well-posedness of coupled parabolic systems. Sci China Math, 2020, 63: 321-356 |
[22] | Xu R Z, Yang Y B, Liu Y C. Global well-posedness for strongly damped viscoelastic wave equation. Appl Anal, 2013, 92: 138-157 |
[23] | Xu R Z, Yang Y B. Finite time blow up for the nonlinear fourth-order dispersive-dissipative wave equation at high energy level. Int J Math, 2012, 5: 1-10 |
[1] | Zhu Peng, Chen Yanping, Xu Xianyu. BDF2-Type Finite Element Method for Time-Fractional Diffusion-Wave Equations on Nonuniform Grids [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1268-1290. |
[2] | Feng Zhendong, Guo Fei, Li Yuequn. Breakdown of Solutions to a Weakly Coupled System of Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2025, 45(3): 726-747. |
[3] | Bai Jinyan, Chai Shugen. Stabilization of Degenerate Wave Equations with Delayed Boundary Feedback [J]. Acta mathematica scientia,Series A, 2024, 44(1): 133-139. |
[4] | Xinhai He,Mei Liu,Han Yang. Existence and Uniqueness of Global Solutions for a Class of Semilinear Time Fractional Diffusion-Wave Equations [J]. Acta mathematica scientia,Series A, 2022, 42(6): 1705-1718. |
[5] | Kaixuan Zhu,Yongqin Xie,Xinyu Mei,Xijun Deng. Uniform Attractors for the Sup-Cubic Weakly Damped Wave Equations with Delays [J]. Acta mathematica scientia,Series A, 2022, 42(1): 86-102. |
[6] | Yuge Du,Shuying Tian. Existence and Blow-Up of a Parabolic Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2021, 41(6): 1816-1829. |
[7] | Baiping Ouyang,Shengzhong Xiao. Nonexistence of Global Solutions for a Semilinear Double-Wave Equation with a Nonlinear Memory Term [J]. Acta mathematica scientia,Series A, 2021, 41(5): 1372-1381. |
[8] | Dongxia Fan,Dongxia Zhao,Na Shi,Tingting Wang. The PDP Feedback Control and Stability Analysis of a Diffusive Wave Equation [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1088-1096. |
[9] | Jinglei Zhao,Jiacheng Lan,Shanshan Yang. Lifespan Estimate of Damped Semilinear Wave Equation in Exterior Domain with Neumann Boundary Condition [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1033-1041. |
[10] | Xingqian Ling,Weiguo Zhang. Periodic Wave Solutions, Solitary Wave Solutions and Their Relationship for Generalized Symmetric Regularized Long Wave Equation with Two Nonlinear Terms [J]. Acta mathematica scientia,Series A, 2021, 41(3): 603-628. |
[11] | Changwang Xiao,Fei Guo. Global Existence and Blowup Phenomena for a Semilinear Wave Equation with Time-Dependent Damping and Mass in Exponentially Weighted Spaces [J]. Acta mathematica scientia,Series A, 2020, 40(6): 1568-1589. |
[12] | Shoujun Huang,Xiwang Meng. Improved Ordinary Differential Inequality and Its Application to Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1319-1332. |
[13] | Shoujun Huang,Juan Wang. Blow up of Solutions to Semilinear Wave Equations with Variable Coefficient for Nonlinearity in an N-Dimensional Exterior Domain [J]. Acta mathematica scientia,Series A, 2020, 40(5): 1259-1268. |
[14] | Yongyi Gu,Wenjun Yuan,Yonghong Wu. Traveling Wave Solutions of the Generalized Hyperelastic-Rod Wave Equation [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1342-1351. |
[15] | Zhigang Wu,Xiaofang Miao. Pointwise Estimates for Systems of Wave Equations with Viscosity [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1421-1442. |
|