Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (3): 756-766.

Previous Articles     Next Articles

Existence and Multiplicity of Solutions to a Class of Klein-Gordon-Maxwell Systems

Duan Yu,Sun Xin*()   

  1. College of Science, Guizhou University of Engineering Science, Guizhou Bijie 551700
  • Received:2024-08-13 Revised:2025-01-13 Online:2025-06-26 Published:2025-06-20
  • Supported by:
    Bijie Scientific and Technological Program([2023]28);Bijie Scientific and Technological Program([2023]52)

Abstract:

This article concerns the following Klein-Gordon-Maxwell system $\begin{equation*} \begin{cases} -\Delta u+ V(x)u-(2\omega+\phi)\phi u=f(x,u)+K(x)|u|^{s-2}u, & x\in \mathbb{R}^{3},\\ \Delta \phi=(\omega+\phi)u^2, & x\in \mathbb{R}^{3}, \end{cases} \end{equation*}$ where $\omega> 0$ is a constant. When $f$ satisfies local condition just in a neighborhood of the origin, existence and multiplicity of nontrivial solutions can be proved via variational methods and Moser iteration. Our result completes some recent works concerning research on solutions of this system.

Key words: Klein-Gordon-Maxwell system, variational methods, moser iteration, nontrivial solutions

CLC Number: 

  • O175.25
Trendmd