Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (4): 1110-1127.
Previous Articles Next Articles
Sun Zexin,Zhang Li,Bao Xiongxiong*()
Received:
2024-05-07
Revised:
2025-03-10
Online:
2025-08-26
Published:
2025-08-01
Supported by:
CLC Number:
Sun Zexin, Zhang Li, Bao Xiongxiong. Spreading Speeds for Partially Degenerate Models in Multi-Dimensional Time-Space Periodic Media[J].Acta mathematica scientia,Series A, 2025, 45(4): 1110-1127.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bao X, Li W T. Propagation phenomena for partially degenerate nonlocal dispersal models in time and space periodic habitats. Nonlinear Anal Real World Appl, 2020, 51: 102975 |
[2] | Du L J, Li W T, Shen W. Propagation phenomena for time-space periodic semiflows and applications to cooperative systems in multi-dimensional media. J Functional Analysis, 2022, 2.2( 9): 109415 |
[3] | Capasso V. Mathematical Structures of Epidemic Systems. Heidelberg: Springer-Verlag, 1993 |
[4] | Capasso V, Wilson R E. Analysis of reaction-diffusion system modeling man-environment-man epidemics. SIAM J Appl Math, 1997, 57(2): 327-346 |
[5] | Fang J, Zhao X Q. Monotone wavefronts for partially degenerate reaction-diffusion system. J Dynam Differential Equations, 2009, 21: 663-680 |
[6] | Fang J, Lai X, Wang F B. Spatial dynamics of a dengue transmission model in time-space perioidc environment. J Differential Equations, 2020, 2.9(8): 149-175 |
[7] | Fang J, Yu X, Zhao X Q. Traveling waves and spreading speeds for time-space periodic monotone systems. J Functional Analysis, 2017, 2.2(10): 4222-4262 |
[8] | Hadeler K P, Lewis M. Spatial dynamics of the diffusive logistic equation with a sedentary compartment. Can Appl Math Q, 2020, 10: 473-499 |
[9] | Huang J, Shen W. Spreeds of spread and propagation for KPP models in time almost and space periodic media. SIAM J Appl Dynamical Systems, 2009, 8(3): 790-821 |
[10] | Lewis M, Schmitz G. Biological invasion of an organism with separate mobile and stationary states: Modeling and analysis. Forma, 1996, 11: 1-25 |
[11] | Li B. Traveling wave solutions in partially degenerate cooperative reaction-diffusion system. J Differential Equations, 2012, 2.2(9): 4842-4861 |
[12] | Liang X, Zhang L, Zhao X Q. The principal eigenvalue for degenerate periodic reaction-diffusion systems. SIAM J Math Anal, 2017, 49(5): 3603-3636 |
[13] | Liang X, Zhao X Q. Spreading speeds and traveling waves for abstract monostable evolution systems. J Functional Analysis, 2012, 2.9: 857-903 |
[14] | Liang X, Yi Y, Zhao X Q. Spreading speeds and traveling waves for periodic evolution systems. J Differential Equations, 2006, 2.1: 57-77 |
[15] | Lui J. Spreading speeds of time-dependent partially degenerate reaction-diffusion systems. Chin Ann Math ser B, 2022, 43: 79-94 |
[16] | Lutscher F, Lewis M A, McCauley E. Effects of heterogeneity on spread and persistence in rivers. Bull Math Biol, 2006, 68: 2129-2160 |
[17] | Martin R H, Smith H L. Abstract functional differential equations and reaction-diffusion systems. Trans Amer Math Soc, 1990, 3.1: 1-44 |
[18] | Shen W. Variational principle for spatial spreading speed and generalized wave solutions in time almost periodic and space periodic KPP model. Trans Amer Math Soc, 2010, 3.2: 5125-5168 |
[19] | Takahashi L T, Maidana N A, et al. Mathematical models for the Aedes aegypti dispersal dynamics: traveling waves by wing and wind. Bull Math Biol, 2005, 67: 509-528 |
[20] | Wang X, Zhao X Q. Pulsating waves of a paratially degenerate reaction-diffusion system in a periodic habitats. J Differential Equations, 2015, 2.9: 7238-7259 |
[21] | Wang J B, Li W T, Sun J W. Global dynamics and spreading speeds for a partially degenerate system with non-local dispersal in periodic habitats. Proc Royal Soc Edinburgh, 2018, 1.8(4): 849-880 |
[22] | Wu C, Xiao D, Zhao X Q. Spreading speeds of a partially degenerate reaction diffusion system in a periodic habitats. J Differential Equations, 2013, 2.5(11): 3983-4011 |
[23] | Wu S L, Sun Y J, Liu S Y. Traveling fonts and entire solutions in partially degenerate reaction-diffusion system with monostable nonlinearity. Discret Contin Dyn Syst, 2013, 33: 921-946 |
[24] | Wu S L, Hsu C H. Periodic traveling fronts for partially degenerate reaction-diffusion systems with bistable and time-periodic nonlinearity. Advances in Nonlinear Analysis, 2020, 9(1): 923-957 |
[25] | Xu D, Zhao X Q. Bistable waves in an epidemic model. J Dynam Differential Equations, 2005, 17(1): 219-247 |
[26] |
Weinberger H F. On spreading speeds and traveling waves for growth and migration models in a periodic habitat. J Math Biol, 2002, 45(6): 511-548
pmid: 12439589 |
[27] | Yu X, Zhao X Q. Propagation phenomena for a reaction advection diffusion competition model in a periodic habitat. J Dynam Differential Equations, 2017, 29(1): 41-66 |
[28] | Zhao X Q, Wang W. Fisher waves in an epidemic model. Discret Contin Dyn Syst, 2004, 4: 1117-1128 |
[1] | Wang Hanyi, Huang Shiyu, Xiang Jianlin. Mountain-pass Solution and Ground State Solution for a Kirchhoff Type Elliptic Equation [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1041-1057. |
[2] | Zeng Xiaping, Lu Wenwen, Pang Guoping, Liang Zhiqing. Single Population Dynamics Model of Fish with Seasonal Switching and Impulsive Perturbations [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1206-1216. |
[3] | Zhu Weipeng, Li Jinlu, Wu Xing. Global Smooth Solutions of the Damped Boussinesq Equations with a Class of Large Initial Data [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1077-1085. |
[4] | Shou Xiaohua, Zhong Xin. A Serrin Criterion for Three-Dimensional Compressible Non-Isothermal Nematic Liquid Crystal Flows [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1058-1076. |
[5] | Lv Dongting. Globally Asymptotic Stability of 2-Species Reaction-Diffusion Systems of Spatially Inhomogeneous Models [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1171-1183. |
[6] | Zuo Wenwen, Zhou Shouming. Global Solutions for the Parabolic-Parabolic Keller-Segel Equation with a Logistic Source Term in High Dimensions [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1100-1109. |
[7] | Liu Yu, Chen Guanggan, Li Shuyong. Nonlinear Stability of Traveling Waves for Stochastic Kuramoto-Sivashinsky Equation [J]. Acta mathematica scientia,Series A, 2025, 45(3): 790-806. |
[8] | Lu Gaojie, Han Zhong, Liu Lu. Darboux Transformation and Exact Solutions of the Nonlocal Reverse Space-Time Higher-Order Nonlinear Schrödinger Equation [J]. Acta mathematica scientia,Series A, 2025, 45(3): 767-775. |
[9] | Duan Yu, Sun Xin. Existence and Multiplicity of Solutions to a Class of Klein-Gordon-Maxwell Systems [J]. Acta mathematica scientia,Series A, 2025, 45(3): 756-766. |
[10] | Feng Zhendong, Guo Fei, Li Yuequn. Breakdown of Solutions to a Weakly Coupled System of Semilinear Wave Equations [J]. Acta mathematica scientia,Series A, 2025, 45(3): 726-747. |
[11] | Zhou Yujie,Luo Weiyu,Wang Yufeng,Zhang Zhongxiang. Poincaré-Bertrand Formula on Smooth Surfaces in Quaternion Analysis [J]. Acta mathematica scientia,Series A, 2025, 45(2): 534-553. |
[12] | Li Bin,Xie Li. The Effects of Police Deployment in a Chemotaxis System with Singular Sensitivity for Criminal Activities [J]. Acta mathematica scientia,Series A, 2025, 45(2): 512-533. |
[13] | Chen Na,Wang Peihe. Gradient Estimate of Solutions to Hessian Quotient Equations with Oblique Boundary Value [J]. Acta mathematica scientia,Series A, 2025, 45(2): 493-511. |
[14] | Li Jianjun,Li Yangchen. The Existence and Blow-Up of Solutions for a Class of Fractional $ p$-Laplace Diffusion Equation with Logarithmic Nonlinearity [J]. Acta mathematica scientia,Series A, 2025, 45(2): 465-478. |
[15] | Meng Xiaoying,Lu Lu. Existence and Asymptotic Behavior of Solutions for Kirchhoff Equations Involving the Fractional $ p$-Laplacian [J]. Acta mathematica scientia,Series A, 2025, 45(2): 434-449. |
|