| [1] | Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26(3): 399-415 |
| [2] | Keller E F, Segel L A. Model for chemotaxis. J Theoret Biol, 1971, 30(2): 225-234 |
| [3] | Osaki K, Yagi A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcialaj Ekvacioj Serio Internacia, 2001, 44(3): 441-470 |
| [4] | Nagai T, Senba T, Yoshida K. Application of the trudinger-moser inequah. ty to a parabolic system of chemotaxis. Funkc Ekvacioj, 1997, 40: 411-433 |
| [5] | Winkler M. Does a 'volume-filling effect' always prevent chemotactic collapse?. Mathematical Methods in the Applied Sciences, 2010, 33(1): 12-24 |
| [6] | Cao X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. arXiv: 1405.6666 |
| [7] | Tello J I, Winkler M. A chemotaxis system with logistic source. Communications in Partial Differential Equations, 2007, 32(6): 849-877 |
| [8] | Winkler M. Chemotaxis with logistic source: very weak global solutions and their boundedness properties. Journal of Mathematical Analysis and Applications, 2008, 3.8(2): 708-729 |
| [9] | Zheng J. Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. Journal of Differential Equations, 2015, 2.9(1): 120-140 |
| [10] | Winkler M. Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Communications in Partial Differential Equations, 2010, 35(8): 1516-1537 |
| [11] | Yang C, Cao X, Jiang Z, et al. Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source. Journal of Mathematical Analysis and Applications, 2015, 4.0(1): 585-591 |
| [12] | Tao Y, Winkler M. Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Zeitschrift für angewandte Mathematik und Physik, 2015, 66: 2555-2573 |
| [13] | Xiang T. How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?. Journal of Mathematical Analysis and Applications, 2018, 4.9(2): 1172-1200 |
| [14] | Lankeit J. Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. Journal of Differential Equations, 2015, 2.8(4): 1158-1191 |
| [15] | Jin H Y, Xiang T. Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model. Comptes Rendus Mathematique, 2018, 3.6(8): 875-885 |
| [16] | Raczyński A. Stability property of the two-dimensional Keller-Segel model. Asymptotic Analysis, 2009, 61(1): 35-59 |
| [17] | Biler P, Guerra I, Karch G. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. arXiv: 1401.7650 |
| [18] | Corrias L, Escobedo M, Matos J. Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane. Journal of Differential Equations, 2014, 2.7(6): 1840-1878 |
| [19] | Biler P, Boritchev A, Brandolese L. Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions. Journal of Differential Equations, 2023, 3.4: 891-914 |
| [20] | Biler P, Cannone M, Guerra I A, et al. Global regular and singular solutions for a model of gravitating particles. Mathematische Annalen, 2004, 3.0: 693-708 |