[1] |
Keller E F, Segel L A. Initiation of slime mold aggregation viewed as an instability. Journal of Theoretical Biology, 1970, 26(3): 399-415
pmid: 5462335
|
[2] |
Keller E F, Segel L A. Model for chemotaxis. J Theoret Biol, 1971, 30(2): 225-234
|
[3] |
Osaki K, Yagi A. Finite dimensional attractor for one-dimensional Keller-Segel equations. Funkcialaj Ekvacioj Serio Internacia, 2001, 44(3): 441-470
|
[4] |
Nagai T, Senba T, Yoshida K. Application of the trudinger-moser inequah. ty to a parabolic system of chemotaxis. Funkc Ekvacioj, 1997, 40: 411-433
|
[5] |
Winkler M. Does a 'volume-filling effect' always prevent chemotactic collapse?. Mathematical Methods in the Applied Sciences, 2010, 33(1): 12-24
|
[6] |
Cao X. Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces. arXiv: 1405.6666
|
[7] |
Tello J I, Winkler M. A chemotaxis system with logistic source. Communications in Partial Differential Equations, 2007, 32(6): 849-877
|
[8] |
Winkler M. Chemotaxis with logistic source: very weak global solutions and their boundedness properties. Journal of Mathematical Analysis and Applications, 2008, 3.8(2): 708-729
|
[9] |
Zheng J. Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source. Journal of Differential Equations, 2015, 2.9(1): 120-140
|
[10] |
Winkler M. Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source. Communications in Partial Differential Equations, 2010, 35(8): 1516-1537
|
[11] |
Yang C, Cao X, Jiang Z, et al. Boundedness in a quasilinear fully parabolic Keller-Segel system of higher dimension with logistic source. Journal of Mathematical Analysis and Applications, 2015, 4.0(1): 585-591
|
[12] |
Tao Y, Winkler M. Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system. Zeitschrift für angewandte Mathematik und Physik, 2015, 66: 2555-2573
|
[13] |
Xiang T. How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?. Journal of Mathematical Analysis and Applications, 2018, 4.9(2): 1172-1200
|
[14] |
Lankeit J. Eventual smoothness and asymptotics in a three-dimensional chemotaxis system with logistic source. Journal of Differential Equations, 2015, 2.8(4): 1158-1191
|
[15] |
Jin H Y, Xiang T. Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model. Comptes Rendus Mathematique, 2018, 3.6(8): 875-885
|
[16] |
Raczyński A. Stability property of the two-dimensional Keller-Segel model. Asymptotic Analysis, 2009, 61(1): 35-59
|
[17] |
Biler P, Guerra I, Karch G. Large global-in-time solutions of the parabolic-parabolic Keller-Segel system on the plane. arXiv: 1401.7650
|
[18] |
Corrias L, Escobedo M, Matos J. Existence, uniqueness and asymptotic behavior of the solutions to the fully parabolic Keller-Segel system in the plane. Journal of Differential Equations, 2014, 2.7(6): 1840-1878
|
[19] |
Biler P, Boritchev A, Brandolese L. Large global solutions of the parabolic-parabolic Keller-Segel system in higher dimensions. Journal of Differential Equations, 2023, 3.4: 891-914
|
[20] |
Biler P, Cannone M, Guerra I A, et al. Global regular and singular solutions for a model of gravitating particles. Mathematische Annalen, 2004, 3.0: 693-708
|