Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (4): 1100-1109.

Previous Articles     Next Articles

Global Solutions for the Parabolic-Parabolic Keller-Segel Equation with a Logistic Source Term in High Dimensions

Zuo Wenwen(),Zhou Shouming*()   

  1. College of Mathematics Science, Chongqing Normal University, Chongqing 401331
  • Received:2024-11-20 Revised:2025-03-06 Online:2025-08-26 Published:2025-08-01
  • Supported by:
    Science and Technology Research Program of Chongqing Municipal Educational Commission(KJZD-M202200501);Science and Technology Research Program of Chongqing Municipal Educational Commission(KJQN202300544);Chongqing Normal University(BWLJ2023005);Natural Science Foundation of Chongqing(CSTB2024NSCQ-MSX0922);Natural Science Foundation of Chongqing(CSTB2024NSCQ-MSX0801)

Abstract:

The research mainly focuses on the Cauchy problem of the parabolic-parabolic Keller-Segel equation with a Logistic source. The equation is as follows

$\begin{cases}u_{t}=\Delta u-\nabla \cdot(u \nabla \varphi)+c u^{2}, & x \in \mathbb{R}^{d},\quad t>0, \\ \tau \varphi_{t}=\Delta \varphi+u, & x \in \mathbb{R}^{d},\quad t>0, \\ u(0)=u_{0},\quad \varphi(0)=\varphi_{0}, & x \in \mathbb{R}^{d},\quad t=0.\end{cases}$

where the constants $c \in \mathbb{R}, \tau>0, d \geq 2$, initial values $u_{0} \in \mathcal{P} \mathcal{M}^{d-2}\left(\mathbb{R}^{d}\right), \varphi_{0} \in \mathcal{S}\left(\mathbb{R}^{d}\right)$. When $c=0$, Biler-Boritchev-Brandolese proved that for any initial value equation of arbitrary size, a global solution exists in the case of the diffusion parameter $\tau \gg 1$. Using the fixed point lemma and the method of scale invariance to obtain the existence and uniqueness of mild solutions for the parabolic-parabolic Keller-Segel equation with a square Logistic source, under initial conditions $u_{0}$ and $\varphi_{0}$ have certain restrictive conditions (which depend on the parameter $\tau$).

Key words: Keller-Segel equations, parabolic equations, inviscid limit

CLC Number: 

  • O175.23
Trendmd