| [1] | Bidaut-Véron M F. Initial blow-up for the solutions of a semilinear parabolic equation with source term//Gauthier-Villars. équations aux Dérivées Partielles et Applications, Paris: Elsevier, 1998: 189-198 | | [2] | Br?ndle C, Colorado E, de Pablo A, Sànchez U. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinb Sec A, 2013, 1.3(1): 39-71 | | [3] | Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Commun Partial Differ Equ, 2007, 32(8): 1245-1260 | | [4] | Chen W, Fang Y, Yang R. Liouville theorems involving the fractional Laplacian on a half space. Adv Math, 2015, 2.4(9): 167-198 | | [5] | Chen W, Li C. Maximum principles for the fractional $p$-Laplacian and symmetry of solutions. Adv Math, 2018, 3.5: 735-758 | | [6] | Chen W, Li C, Li Y. A direct method of moving planes for the fractional Laplacian. Adv Math, 2017, 3.8: 404-437 | | [7] | Chen W, Li C, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59(3): 330-343 | | [8] | Chen W, Li Y, Ma P. The Fractional Laplacian. Hackensack: World Scientific, 2020 | | [9] | Chen W, Wang P, Niu Y, Hu Y. Asymptotic method of moving planes for fractional parabolic equations. Adv Math, 2021, 3.7: 107463 | | [10] | Chen W, Wu L. Liouville theorems for fractional parabolic equations. Adv Nonlinear Stud, 2021, 21(4): 939-958 | | [11] | Chen W, Wu L, Wang P. Nonexistence of solutions for inde nite fractional parabolic equations. Adv Math, 2021, 3.2: 108018 | | [12] | Chen W, Zhu J. Indefinite fractional elliptic problem and Liouville theorems. J Differ Equ, 2016, 2.0(5): 4758-4785 | | [13] | Ding M, Zhang C, Zhou S. Local boundedness and H?lder continuity for the parabolic fractional $p$-Laplace equations. Calc Var Partial Differ Equ, 2021, 60(1): 1-45 | | [14] | Li C, Chen W. A Hopf type lemma for fractional equations. Proc Amer Math Soc, 2019, 1.7(4): 1565-1575 | | [15] | Merle F, Zaag H. Optimal estimates for blow-up rate and behavior for nonlinear heat equations. Comm Pure Appl Math, 1998, 51(2): 139-196 | | [16] | Polà?ik P, Quittner P, Souplet P. Singularity and decay estimates in superlinear problems via Liouville-type theorems. II: Parabolic equations. Indiana Univ Math J, 2007, 56(2): 879-908 | | [17] | Wang P. Symmetry and monotonicity of solutions to elliptic and parabolic fractional $p$-equations. arXiv: 2502.16158 | | [18] | Wang P, Chen W. Hopf's lemmas for parabolic fractional $p$-Laplacians. Commun Pure Appl Anal, 2022, 21(9): 3055-3069 | | [19] | Wu L, Chen W. The sliding methods for the fractional $p$-Laplacian. Adv Math, 2020, 3.1: 106933 | | [20] | Xing R. The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems. Acta Math Sin (Engl Ser), 2009, 25(3): 503-518 |
|