Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (4): 1086-1099.
Previous Articles Next Articles
Received:
2024-11-27
Revised:
2025-02-28
Online:
2025-08-26
Published:
2025-08-01
Supported by:
CLC Number:
Ma Jingjing, Wei Na. Monotonicity of Solutions for Parabolic Equations Related to Fractional Order
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Bidaut-Véron M F. Initial blow-up for the solutions of a semilinear parabolic equation with source term//Gauthier-Villars. Équations aux Dérivées Partielles et Applications, Paris: Elsevier, 1998: 189-198 |
[2] | Brändle C, Colorado E, de Pablo A, Sànchez U. A concave-convex elliptic problem involving the fractional Laplacian. Proc Roy Soc Edinb Sec A, 2013, 1.3(1): 39-71 |
[3] | Caffarelli L, Silvestre L. An extension problem related to the fractional Laplacian. Commun Partial Differ Equ, 2007, 32(8): 1245-1260 |
[4] | Chen W, Fang Y, Yang R. Liouville theorems involving the fractional Laplacian on a half space. Adv Math, 2015, 2.4(9): 167-198 |
[5] | Chen W, Li C. Maximum principles for the fractional $p$-Laplacian and symmetry of solutions. Adv Math, 2018, 3.5: 735-758 |
[6] | Chen W, Li C, Li Y. A direct method of moving planes for the fractional Laplacian. Adv Math, 2017, 3.8: 404-437 |
[7] | Chen W, Li C, Ou B. Classification of solutions for an integral equation. Comm Pure Appl Math, 2006, 59(3): 330-343 |
[8] | Chen W, Li Y, Ma P. The Fractional Laplacian. Hackensack: World Scientific, 2020 |
[9] | Chen W, Wang P, Niu Y, Hu Y. Asymptotic method of moving planes for fractional parabolic equations. Adv Math, 2021, 3.7: 107463 |
[10] | Chen W, Wu L. Liouville theorems for fractional parabolic equations. Adv Nonlinear Stud, 2021, 21(4): 939-958 |
[11] | Chen W, Wu L, Wang P. Nonexistence of solutions for inde nite fractional parabolic equations. Adv Math, 2021, 3.2: 108018 |
[12] | Chen W, Zhu J. Indefinite fractional elliptic problem and Liouville theorems. J Differ Equ, 2016, 2.0(5): 4758-4785 |
[13] | Ding M, Zhang C, Zhou S. Local boundedness and Hölder continuity for the parabolic fractional $p$-Laplace equations. Calc Var Partial Differ Equ, 2021, 60(1): 1-45 |
[14] | Li C, Chen W. A Hopf type lemma for fractional equations. Proc Amer Math Soc, 2019, 1.7(4): 1565-1575 |
[15] | Merle F, Zaag H. Optimal estimates for blow-up rate and behavior for nonlinear heat equations. Comm Pure Appl Math, 1998, 51(2): 139-196 |
[16] | Polàčik P, Quittner P, Souplet P. Singularity and decay estimates in superlinear problems via Liouville-type theorems. II: Parabolic equations. Indiana Univ Math J, 2007, 56(2): 879-908 |
[17] | Wang P. Symmetry and monotonicity of solutions to elliptic and parabolic fractional $p$-equations. arXiv: 2502.16158 |
[18] | Wang P, Chen W. Hopf's lemmas for parabolic fractional $p$-Laplacians. Commun Pure Appl Anal, 2022, 21(9): 3055-3069 |
[19] | Wu L, Chen W. The sliding methods for the fractional $p$-Laplacian. Adv Math, 2020, 3.1: 106933 |
[20] | Xing R. The blow-up rate for positive solutions of indefinite parabolic problems and related Liouville type theorems. Acta Math Sin (Engl Ser), 2009, 25(3): 503-518 |
[1] | Zuo Wenwen, Zhou Shouming. Global Solutions for the Parabolic-Parabolic Keller-Segel Equation with a Logistic Source Term in High Dimensions [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1100-1109. |
[2] | Liu Wei, Xu Meizhen. Eigenvalues of a Class of Second-Order Differential Operator with Eigenparameters Dependent Internal Point Conditions [J]. Acta mathematica scientia,Series A, 2024, 44(4): 815-828. |
[3] | Yin Li, Huang Liguo, Zhang Jumei. Inequality and Asymptotic Approximation Generalized Nielsen Beta Function with Two Parameters [J]. Acta mathematica scientia,Series A, 2024, 44(3): 575-585. |
[4] | Tian Jingfeng, Mao Zhongxuan, Sun Longfa. Monotonicity Rules of the Ratios of Parametric Nabla Integrals and Parametric Nabla Integrals with Variable Limits and Their Applications [J]. Acta mathematica scientia,Series A, 2024, 44(2): 298-312. |
[5] | Daiji Yongzhi, Wang Yiru, Huang Shuibo. Monotonicity and Symmetry of Singular Solutions to Semilinear Mixed Local and Nonlocal Elliptic Equations [J]. Acta mathematica scientia,Series A, 2024, 44(2): 453-464. |
[6] | Zhang Zhipeng, Zhang Liang. Controllability of a Nonlinear Parabolic Systems with Drift-Diffusion Term [J]. Acta mathematica scientia,Series A, 2023, 43(6): 1744-1758. |
[7] | Tang Yanjuan. The Radial Symmetry and Monotonicity of Entire Solutions for Fractional Parabolic Equations [J]. Acta mathematica scientia,Series A, 2023, 43(5): 1409-1416. |
[8] | Hongqiao Li. Liouville Type Theorem for Hartree Equations in Half Spaces [J]. Acta mathematica scientia,Series A, 2021, 41(2): 388-401. |
[9] | Miaokun Wang,Yuming Chu,Songliang Qiu. The Simple Proof and Generalization of a Conjecture Concerning Generalized Legendre Identity [J]. Acta mathematica scientia,Series A, 2020, 40(3): 662-666. |
[10] | Junjie Zhang,Shenzhou Zheng,Haiyan Yu. Lorentz Estimates for Nondivergence Parabolic Equations with Partially BMO Coefficients [J]. Acta mathematica scientia,Series A, 2019, 39(6): 1405-1420. |
[11] | Yin Li, Huang Liguo. Two Inequalities Related to Generalized Elliptic Integrals [J]. Acta mathematica scientia,Series A, 2018, 38(1): 46-53. |
[12] | Wang Shengjun, Han Yazhou. Generalized Picone's Identity and Its Applications for Heisenberg-Greiner Operators [J]. Acta mathematica scientia,Series A, 2017, 37(5): 895-901. |
[13] | Lu Pingping, Hu Lianggen. A Note to Monotonicity Formula for Stable Solutions of the Weighted Elliptic System [J]. Acta mathematica scientia,Series A, 2017, 37(4): 698-705. |
[14] | Hu Lianggen. Liouville Type Theorems of Solutions for the Nonlinear Hénon Equations [J]. Acta mathematica scientia,Series A, 2016, 36(4): 639-648. |
[15] | Zhang Pingping, Li Lin. Iteration of Upper Semi-Continuous Multifunctions on Interval [J]. Acta mathematica scientia,Series A, 2016, 36(2): 231-243. |
|