Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (4): 1255-1267.
Previous Articles Next Articles
Chen Hongye(),Fang Donghui*(
),Wu Kexing(
)
Received:
2024-12-17
Revised:
2025-02-18
Online:
2025-08-26
Published:
2025-08-01
Supported by:
CLC Number:
Chen Hongye, Fang Donghui, Wu Kexing. Optimality Conditions and Total Lagrange Dualities for Evenly Convex Optimization Problems[J].Acta mathematica scientia,Series A, 2025, 45(4): 1255-1267.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
[1] | Dinh N, Goberna M A, López M A, et al. New Farkas-type constraint qualifications in convex infinite programming. ESAIM Control Optim Calc Var, 2007, 13(3): 580-597 |
[2] | Dinh N, Goberna M A, Lopez M A, et al. Relaxed Lagrangian duality in convex infinite optimization: reverse strong duality and optimality. arXiv: 2106.09299 |
[3] | Boţ R I, Grad S M, Wanka G. On strong and total Lagrange duality for convex optimization problems. Math Anal Appl, 2008, 3.7(2): 1315-1325 |
[4] | Boţ R I, Wanka G. A weaker regularity condition for subdifferential calculus and Fenchel duality in infinite dimensional spaces. Nonlinear Anal, 2006, 64(12): 2787-2804 |
[5] | Boţ R I. Conjugate Duality in Convex Optimization. Berlin: Springer-Verlag, 2009 |
[6] | Boţ R I, Grad S M, Wanka G. New regularity conditions for strong and total Fenchel-Lagrange duality in infinite dimensional spaces. Nonlinear Anal, 2008, 69(1): 323-336 |
[7] | Goberna M A, Jeyakumar V, López M A. Necessary and sufficient constraint qualifications for solvability of systems of infinite convex inequalities. Nonlinear Anal, 2008, 68(5): 1184-1194 |
[8] | Li C, Ng K F, Pong T K. Constraint qualifications for convex inequality systems with applications in constrained optimization. SIAM J Optim, 2008, 19(1): 163-187 |
[9] | Fang D H, Li C, Ng K F. Constraint qualifications for extended Farkas's lemmas and Lagrangian dualities in convex infinite programming. SIAM J Optim, 2009, 20(3): 1311-1332 |
[10] | Fang D H, Li C, Ng K F. Constraint qualifications for optimality conditions and total Lagrange dualities in convex infinite programming. Nonlinear Anal, 2010, 73(5): 1143-1159 |
[11] | 王娇浪, 方东辉. 一类非凸约束优化问题的近似最优性条件及其混合型对偶. 数学物理学报, 2022, 42A(3): 651-660 |
Wang J L, Fang D H. Approximate optimality conditions and mixed type duality for a class of non-convex optimization problems. Acta Math Sci, 2022, 42A(3): 651-660 | |
[12] | Fajardo M D. Regularity conditions for strong duality in evenly convex optimization problems: An application to Fenchel duality. J Convex Anal, 2015, 22(3): 711-731 |
[13] | Fajardo M D, Vicente-Pérez J, Rodríguez M M L. Infimal convolution, c-subdifferentiability, and Fenchel duality in evenly convex optimization. Top, 2012, 20: 375-396 |
[14] | Fajardo M D, Vidal J. Stable strong Fenchel and Lagrange duality for evenly convex optimization problems. Optimization, 2016, 65(9): 1675-1691 |
[15] |
Fajardo M D, Grad S M, Vidal J. New duality results for evenly convex optimization problems. Optimization, 2021, 70(9): 1837-1858
doi: 10.1080/02331934.2020.1756287 pmid: 34531627 |
[16] | Fajardo M D, Vidal J. A comparison of alternative c-conjugate dual problems in infinite convex optimization. Optimization, 2017, 66(5): 705-722 |
[17] | Fajardo M D, Vidal J. Necessary and sufficient conditions for strong Fenchel-Lagrange duality via a coupling conjugation scheme. J Optim Theory Appl, 2018, 1.6: 57-73 |
[18] | Fajardo M D, Rodríguez M M L, Vidal J. Lagrange duality for evenly convex optimization problems. J Optim Theory Appl, 2016, 1.8: 109-128 |
[19] | Rodríguez M M L, Vicente-Pérez J. On evenly convex functions. J Convex Anal, 2011 18(3): 721-736 |
[20] | Fajardo M D, Vidal J. On subdifferentials via a generalized conjugation scheme: an application to DC problems and optimality conditions. Set-Valued Var Anal, 2022, 30(4): 1313-1331 |
[21] | Martínez-Legaz J E, Vicente-Pérez J. The e-support function of an e-convex set and conjugacy for e-convex functions. J Math Anal Appl, 2011, 3.6(2): 602-612 |
[1] | Hu Shanshan, He Suxiang. Optimality Conditions for Non-Negative Group Sparse Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2024, 44(2): 500-512. |
[2] | Jiaolang Wang,Donghui Fang. Approximate Optimality Conditions and Mixed Type Duality for a Class of Non-Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 651-660. |
[3] | Tingwei Pan,Suxiang He. The Greedy Simplex Algorithm for Double Sparsity Constrained Optimization Problems [J]. Acta mathematica scientia,Series A, 2022, 42(3): 920-933. |
[4] | Shengxin Hua,Guolin Yu,Wenyan Han,Xiangyu Kong. Characterization of Optimality to Constrained Vector Equilibrium Problems via Approximate Subdifferential [J]. Acta mathematica scientia,Series A, 2022, 42(2): 365-378. |
[5] | Lingli Hu,Liping Tian,Donghui Fang. Optimality Conditions for DC Composite Optimization Problems with Conical Constraints [J]. Acta mathematica scientia,Series A, 2021, 41(4): 1079-1087. |
[6] | Meng Li,Guolin Yu. Optimality of Robust Approximation Solutions for Uncertain Convex Optimization Problems [J]. Acta mathematica scientia,Series A, 2020, 40(4): 1007-1017. |
[7] | Donghui Fang,Liping Tian,Xianyun Wang. Strong Fenchel-Lagrange Duality for Convex Optimization Problems with Composite Function [J]. Acta mathematica scientia,Series A, 2020, 40(1): 20-30. |
[8] | Lingli Hu, Donghui Fang. Optimality Conditions for Composite Optimization Problems with Conical Constraints [J]. Acta mathematica scientia,Series A, 2018, 38(6): 1112-1121. |
[9] | Huang Zhenggang. A New Notion of Generalized Subgradients and Its Properties [J]. Acta mathematica scientia,Series A, 2015, 35(5): 927-935. |
[10] | LONG Xian-Jun. Optimality Conditions for Approximate Solutions on Nonconvex Vector Equilibrium Problems in Asplund Spaces [J]. Acta mathematica scientia,Series A, 2014, 34(3): 593-602. |
[11] | YU Li, XU Xi-Hong. Generalized Gradient of Set-valued Optimization Problems and Optimality Conditions of Strong-efficient Solutions [J]. Acta mathematica scientia,Series A, 2012, 32(4): 685-690. |
[12] | WANG Qi-Lin, LI Shng-Jie. Generalized |Higher-order Cone-directed Derivatives and Applications to Set-valued Optimization [J]. Acta mathematica scientia,Series A, 2011, 31(4): 902-909. |
[13] |
Zhao Wenhui;Gao Yan.
Second-order Optimality Conditions for C1,1 Semidefinite Programming [J]. Acta mathematica scientia,Series A, 2008, 28(1): 155-163. |
[14] | Hou Zhenmei; Liu Sanyang; Zhou Yong. The Optimality Conditions of Set-valued Vector Optimization on Super Efficiency [J]. Acta mathematica scientia,Series A, 2007, 27(1): 131-137. |
|