| [1] | Nachtigal N M, Reddy S C, Trefethen L N. How fast are nonsymmetric matrix iterations?. SIAM J Matrix Anal Appl, 1992, 13(3): 778-795 | | [2] | Kato T. Perturbation Theory for Linear Operators. New York: Springer-Verlag, 1976 | | [3] | Trefethen L N. Pseudospectra of linear operators. Society Indus Appl Math, 1997, 39(3): 383-406 | | [4] | Trefethen L N, Embree M. Spectra and Pseudospectra:The Behavior of Nonnormal Matrices and Operator. Princeton: Princeton University Press, 2005 | | [5] | B?ttcher A. Pseudospectra and singular values of large convolution operators. J Integral Equations Appl, 1994, 6(3): 267-301 | | [6] | B?ttcher A, Wolf H. Spectral approximation for Segal-Bargmann space Toeplitz operators. Banach Center Publications, 1997, 38(1): 25-48 | | [7] | Davies E B. Pseudospectra of differential operators. J Operator Theory, 2000, 43(2): 243-262 | | [8] | Cui J L, Li C K, Poon Y T. Pseudospectra of special operators and pseudospectrum preservers. J Math Anal Appl, 2014, 419(2): 1261-1273 | | [9] | Dhara K, Kulkarni S H. The $(n,\varepsilon)$-pseudospectrum of an element of a Banach algebra. J Math Anal Appl, 2018, 464(1): 939-954 | | [10] | M?ller M, Pivovarchik V. Spectral Theory of Operator Pencils, Hermite-Biehler Functions, and Their Applications. Switzerland: Springer International Publishing, 2015 | | [11] | Guebbai H. Generalized spectrum approximation and numerical computation of eigenvalue for Schr?dinger operator. Lobachevskii J Math, 2013, 34(1): 45-60 | | [12] | Frayssé V, Gueury M, Nicoud F, et al. Spectral portraits for matrix pencils. Tech Report. Toulouse: CERFACS, 1996 | | [13] | Jos L M, Van D. Pseudospectra for matrix pencils and stability of equilibria. Bit Numer Math, 1997, 37(4): 833-845 | | [14] | Ammar A, Bouchekoua A, Jeribi A. A characterization of S-pseudospectra of linear operators in Hilbert space. Filomat, 2023, 37(5): 1331-1339 | | [15] | Jeribi A. Linear Operators and Their Essential Pseudospectra. Canada: Apple Academic Press, 2018 | | [16] | Ammar A, Bouchekoua A, Jeribi A. New result of the pseudospectra of linear operators in Hilbert space. Filomat, 2023, 15(1): 13-26 | | [17] | Krishna K G, Augustine J. A pseudospectral mapping theorem for operator pencil. Operators and Matrices, 2022, 16(3): 709-732 | | [18] | Khellaf A, Guebbai H, Lemita S, et al. The pseudo-spectrum of operator pencils. Asian Eur J Math, 2020, 13(5): 2050100 | | [19] | Wu D Y, Chen A. Invertibility of infinite-dimensional Hamiltonian operator and its applications. Sci China Math, 2010, 40(9): 921-928 | | [20] | Fan X Y, Chen A. Spectral distribution and its invertibility of a class of nonnegative Hamilton operator. Acta Math Appl Sin, 2009, 32(1): 14-18 | | [21] | Kurina G A. Invertibility of nonnegatively Hamilton operators in Hilbert space. Differ Equations, 2001, 37(6): 880-882 | | [22] | Hou G L, Chen A. Completeness of generalized eigenfunction systems of infinite dimensional Hamiltonian operators and its application in elasticity. Sci China Math, 2012, 42(1): 57-68 | | [23] | Chen A, Jin G H, Wu D Y. On symplectic self-adjointness of Hamiltonian operator matrices. Sci China Math, 2015, 58(4): 821-828 | | [24] | Wu D Y, Chen A. Symplectic self-adjoint of infinite dimensional Hamiltonian operator. Acta Math Appl Sin, 2011, 34(5): 918-923 | | [25] | Chen A, Wu D Y, Hai G J. Numerical range of infinite dimensional Hamiltonian operator. J Sys Sci & Math Scis, 2013, 33(4): 506-510 | | [26] | Yu J H, Chen A. Zhao Y J, et al. Symmetry of a class of $n$-numerical range for Hamilton operator. Math Prac Theory, 2014, 44(2): 193-198 | | [27] | Huang J J, Chen A, Fan X Y. The spectral structure of infinite dimensional Hamilton operator. Sci China Math, 2008, 38(1): 71-78 | | [28] | Wang H, Chen A, Huang J J. The residual spectrum of upper triangular infinite dimensional Hamiltonian operator. Math Prac Theory, 2010, 40(3): 195-201 | | [29] | Bai E, Chen A. Spectral distribution and its invertibility of a class of Hamiltonian operator. Acta Math Appl Sin, 2012, 35(6): 1113-1119 | | [30] | Shen R S, Hou G L. On the pseudospectra and the related properties of infinite dimensional Hamiltonian operator. Linear Multilinear Algebra, 2021, 70(2): 1-12 | | [31] | Conway J B. A Course in Functional Analysis. New York: Springer-Verlag, 1990 | | [32] | Kreyszig E. Introductory Functional Analysis with Application. New York: Wiley, 1989 |
|