Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (6): 1825-1838.
Previous Articles Next Articles
Received:2025-03-28
Revised:2025-06-23
Online:2025-12-26
Published:2025-11-18
Contact:
Yan He
E-mail:202421104011309@stu.hubu.edu.cn;helenaig@hubu.edu.cn
CLC Number:
Yan He, Yuanzheng Zhang. Boundary Value Problems for Some Degenerate Fully Nonlinear Elliptic Equations Arising in Conformal Geometry[J].Acta mathematica scientia,Series A, 2025, 45(6): 1825-1838.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] | Aubin T. Équations différentielles non linéaires et problème de Yamabe concernant la courbure scalaire. J Math Pures Appl, 1976, 55(3): 269-296 |
| [2] |
Blocki Z. Regularity of the degenerate Monge-Ampère equation on compact Kähler manifolds. Math Z, 2003, 244(1): 153-161
doi: 10.1007/s00209-002-0483-x |
| [3] |
Chang A, Gursky M, Yang P. An equation of Monge-Ampère type in conformal geometry and four-manifolds of positive Ricci curvature. Ann of Math, 2002, 155(3): 709-787
doi: 10.2307/3062131 |
| [4] |
Chang A, Gursky M, Yang P. An a priori estimate for a fully nonlinear equation on four-manifolds. J Anal Math, 2002, 87: 151-186
doi: 10.1007/BF02868472 |
| [5] | Chen L, He Y. A class of fully nonlinear equations on Riemannian manifolds with negative curvature. Calc Var Partial Differential Equations, 2024, 63(6): Article 158 |
| [6] |
Chen S. Boundary value problems for some fully nonlinear elliptic equations. Calc Var Partial Differential Equations, 2007, 30(1): 1-15
doi: 10.1007/s00526-006-0072-7 |
| [7] |
Chen S. Conformal deformation on manifolds with boundary. Geom Funct Anal, 2009, 19(4): 1029-1064
doi: 10.1007/s00039-009-0028-0 |
| [8] | Chen X J, Tu Q, Xiang N. Dirichlet problem for degenerate Hessian quotient type curvature equations. Calc Var Partial Differential Equations, 2025, 64(3): Article 99 |
| [9] | Chen X Z, Wei W. The $\sigma_{2} $-curvature equation on a compact manifold with boundary. arXiv 2307.13942, 2023 |
| [10] | Chen X Z, Wei W. Estimates for modified $ \sigma_{2} $ curvature equation on compact manifolds with boundary. arXiv 2405.139134, 2024 |
| [11] | Chu B Z, Li Y Y, Li Z Y. Liouville theorems for conformally invariant fully nonlinear equations. I. arXiv 2311.07542, 2023 |
| [12] |
Hessian equations with elementary symmetric functions. Comm Partial Differential Equations, 2006, 31(7/9): 1005-1025
doi: 10.1080/03605300500481491 |
| [13] | Duncan J A, Nguyen L. Local pointwise second derivative estimates for strong solutions to the $ k $-Yamabe equation on Euclidean domains. Calc Var Partial Differential Equations, 2021, 60(5): Article 177 |
| [14] | Ge Y X, Lin C S, Wang G F. On the $ \sigma_2 $-scalar curvature. J Differential Geom, 2010, 84(1): 45-86 |
| [15] | Ge Y X, Wang G F. On a fully nonlinear Yamabe problem. Ann Sci Ecole Norm Sup, 2006, 39(4): 569-598 |
| [16] | Ge Y X, Wang G F. On a conformal quotient equation. II. Comm Anal Geom, 2013, 21(1): 1-38 |
| [17] | Ge Y X, Wang G F. On a conformal quotient equation. Int Math Res Not IMRN, 2007, 2007(6): Article 19 |
| [18] | Guan P F. $ C^2 $ a priori estimate for degenerate Monge-Ampère equations. Duke Math J, 1997, 86: 323-346 |
| [19] | Guan P F, Li Y Y. The Weyl problem with nonnegative Gauss curvature. J Differential Geom, 1994, 39: 331-342 |
| [20] |
Guan P F, Li Y Y. $ C^1$, 1 estimates for solutions of a problem of Alexandrov. Commun Pure Appl Math, 1997, 50: 789-811
doi: 10.1002/(ISSN)1097-0312 |
| [21] |
Guan P F, Lin C S, Wang G F. Application of the method of moving planes to conformally invariant equations. Math Z, 2004, 247(1): 1-19
doi: 10.1007/s00209-003-0608-x |
| [22] |
Guan P F, Trudinger N S, Wang X J. On the Dirichlet problem for degenerate Monge-Ampère equations. Acta Math, 1999, 182(1): 87-104
doi: 10.1007/BF02392824 |
| [23] | Guan P F, Wang G F. A fully nonlinear conformal flow on locally conformally flat manifolds. J Reine Angew Math, 2003, 557: 219-238 |
| [24] |
Guan P F, Zhang X W. A class of curvature type equations. Pure Appl Math Q, 2021, 17(3): 865-907
doi: 10.4310/PAMQ.2021.v17.n3.a2 |
| [25] |
Gursky M, Viaclovsky J. Fully nonlinear equations on Riemannian manifolds with negative curvature. Indiana U Math J, 2003, 52: 399-419
doi: 10.1512/iumj.2003.52.2313 |
| [26] |
Gursky M J, Viaclovsky J A. Prescribing symmetric functions of the eigenvalues of the Ricci tensor. Ann of Math, 2007, 166: 475-531
doi: 10.4007/annals |
| [27] |
He Y, Sheng W M. On existence of the prescribing $ k $-curvature problem on manifolds with boundary. Comm Anal Geom, 2011, 19(1): 53-77
doi: 10.4310/CAG.2011.v19.n1.a3 |
| [28] |
He Y, Sheng W M. Local estimates for some elliptic equations arising from conformal geometry. Int Math Res Not IMRN, 2013, 2013(2): 258-290
doi: 10.1093/imrn/rnr262 |
| [29] |
He Y, Tu Q, Xiang N. Existence for some degenerate Hessian type equations arising in conformal geometry. Pacific J Math, 2025, 335(1): 97-117
doi: 10.2140/pjm |
| [30] |
Ivochkina N M, Trudinger N S, Wang X J. The Dirichlet problem for degenerate Hessian equations. Comm Partial Differential Equations, 2004, 29: 219-235
doi: 10.1081/PDE-120028851 |
| [31] |
Jiao H M, Jiao Y. The Pogorelov estimates for degenerate curvature equations. Int Math Res Not IMRN, 2024, 2024(18): 12504-12529
doi: 10.1093/imrn/rnae161 |
| [32] | Jiao H M, Wang Z Z. The Dirichlet problem for degenerate curvature equations. J Funct Anal, 2022, 283(1): Art 109485 |
| [33] | Jiao H M, Wang Z Z. Second order estimates for convex solutions of degenerate $ k $-Hessian equations. J Funct Anal, 2024, 286(3): Art 110248 |
| [34] |
Jiang F D, Trudinger N S. Oblique boundary value problems for augmented Hessian equations III. Comm Partial Differential Equations, 2019, 44(8): 708-748
doi: 10.1080/03605302.2019.1597113 |
| [35] |
Jiang F D, Trudinger N S. Oblique boundary value problems for augmented Hessian equations I. Bull Math Sci, 2018, 8(2): 353-411
doi: 10.1007/s13373-018-0124-2 |
| [36] |
Jiang F D, Trudinger N S. Oblique boundary value problems for augmented Hessian equations II. Nonlinear Anal, 2017, 154: 148-173
doi: 10.1016/j.na.2016.08.007 |
| [37] |
Jin Q N, Li A B, Li Y Y. Estimates and existence results for a fully nonlinear Yamabe problem on manifolds with boundary. Calc Var Partial Differential Equations, 2007, 28: 509-543
doi: 10.1007/s00526-006-0057-6 |
| [38] | Krylov N V. Weak interior second order derivative estimates for degenerate nonlinear elliptic equations. Differ Integral Equ, 1994, 7: 133-156 |
| [39] |
Krylov N V. Barriers for derivatives of solutions of nonlinear elliptic equations on a surface in Euclidean space. Comm Partial Differential Equations, 1994, 19: 1909-1944
doi: 10.1080/03605309408821077 |
| [40] | Krylov N V. A theorem on the degenerate elliptic Bellman equations in bounded domains. Differ Integral Equ, 1995, 8: 961-980 |
| [41] |
Krylov N V. On the general notion of fully nonlinear second-order elliptic equations. Trans Am Math Soc, 1995, 347: 857-895
doi: 10.1090/tran/1995-347-03 |
| [42] |
Li A B, Li Y Y. On some conformally invariant fully nonlinear equations. Comm Pure Appl Math, 2003, 56: 1416-1464
doi: 10.1002/cpa.v56:10 |
| [43] |
Li A B, Li Y Y. On some conformally invariant fully nonlinear equations, part II: Liouville, Harnack and Yamabe. Acta Math, 2005, 195: 117-154
doi: 10.1007/BF02588052 |
| [44] |
Li A B, Li Y Y. A fully nonlinear version of the Yamabe problem on manifolds with boundary. J Eur Math Soc (JEMS), 2006, 8: 295-316
doi: 10.4171/jems |
| [45] |
Li J Y, Sheng W M. Deforming metrics with negative curvature by a fully nonlinear flow. Calc Var Partial Differential Equations, 2005, 23: 33-50
doi: 10.1007/s00526-004-0287-4 |
| [46] |
Li Y Y. Local gradient estimates of solutions to some conformally invariant fully nonlinear equations. Comm Pure Appl Math, 2009, 62: 1293-1326
doi: 10.1002/cpa.v62:10 |
| [47] |
Li Y Y, Nguyen L. A compactness theorem for a fully nonlinear Yamabe problem under a lower Ricci curvature bound. J Funct Anal, 2014, 266(6): 3741-3771
doi: 10.1016/j.jfa.2013.08.004 |
| [48] |
Li Y Y, Nguyen L. A fully nonlinear version of the Yamabe problem on locally conformally flat manifolds with umbilic boundary. Adv Math, 2014, 251: 87-110
doi: 10.1016/j.aim.2013.10.011 |
| [49] |
Li Y Y, Nguyen L, Wang B. Comparison principles and Lipschitz regularity for some nonlinear degenerate elliptic equations. Calc Var Partial Differential Equations, 2018, 57: 1-29
doi: 10.1007/s00526-017-1276-8 |
| [50] | Schoen R. Conformal deformation of a Riemannian metric to constant scalar curvature. J Differential Geom, 1984, 20: 479-495 |
| [51] | Sheng W M, Trudinger N, Wang X J. The Yamabe problem for higher order curvatures. J Differential Geom, 2007, 77: 515-553 |
| [52] |
Sheng W M, Yuan L X. A class of Neumann problems arising in conformal geometry. Pacific J Math, 2014, 270(1): 211-235
doi: 10.2140/pjm |
| [53] | Trudinger N S. Remarks concerning the conformal deformation of Riemannian structures on compact manifolds. Ann Scuola Norm Sup Pisa, 1968, 22(2): 265-274 |
| [54] | Trudinger N S, Wang X J. The intermediate case of the Yamabe problem for higher order curvatures. IMRN: Int Math Res Not, 2010, 8(13): 2437-2458 |
| [55] |
Trudinger N S, Wang X J. On Harnack inequalities and singularities of admissible metrics in the Yamabe problem. Calc Var Partial Differential Equations, 2009, 35(3): 317-338
doi: 10.1007/s00526-008-0207-0 |
| [56] | Viaclovsky J. Conformal geometry, contact geometry and the calculus of variations. Duke Math J, 2000, 101: 283-316 |
| [57] |
Wang X J. A priori estimates and existence for a class of fully nonlinear elliptic equations in conformal geometry. Chin Ann Math Ser B, 2006, 27(2): 1-10
doi: 10.1007/s11401-005-0247-0 |
| [58] | Wang X J. Some counterexamples to the regularity of Monge-Ampère equations. Proc Am Math Soc, 1995, 123: 841-845 |
| [59] | Ya Yamabe H. On a deformation of Riemannian structures on compact manifolds. Osaka Math J, 1960, 12: 21-37 |
| [1] | Lin Jiaoyan. Uniform Estimates in Time for the Solution to a Fluid-Particle Model [J]. Acta mathematica scientia,Series A, 2018, 38(3): 565-570. |
| [2] | FANG Shao-Mei, GUO BO-Ling. Attractors for a Damped Generalized Coupled Nonlinear Wave Equations in an Unbounded Domain [J]. Acta mathematica scientia,Series A, 2003, 23(4): 464-473. |
|
||
