Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (6): 1839-1853.
Previous Articles Next Articles
Xiaoming An(
), Yining Fang(
), Zhengchang Jin(
)
Received:2025-03-31
Revised:2025-05-20
Online:2025-12-26
Published:2025-11-18
Supported by:CLC Number:
Xiaoming An, Yining Fang, Zhengchang Jin. Ground State Solution for Fractional Schrödinger Equations with General Logarithmic Nonlinear Terms[J].Acta mathematica scientia,Series A, 2025, 45(6): 1839-1853.
Add to citation manager EndNote|Reference Manager|ProCite|BibTeX|RefWorks
| [1] | Alves C O, Miyagaki O H. Existence and concentration of solution for a class of fractional elliptic equation in $\mathbb{R}^N$ via penalization method. Calc Var, 2016, 55: Article 47 |
| [2] |
Ambrosio V. Multiplicity of positive solutions for a class of fractional schrödinger equations via penalization method. Annali di Matematica, 2017, 196: 2043-2062
doi: 10.1007/s10231-017-0652-5 |
| [3] |
An X, Fang Y. Existence and uniqueness of positive ground state solutions of general logarithmic Schrödinger equations. Journal of Differential Equations, 2025, 422: 57-77
doi: 10.1016/j.jde.2024.12.012 |
| [4] |
An X, Peng S. Multi-peak semiclassical bound states for fractional Schrödinger equations with fast decaying potentials. Electronic Research Archive, 2022, 30(2): 585-614
doi: 10.3934/era.2022031 |
| [5] |
An X, Yang X. Multi-peak solutions for logarithmic Schrödinger equations with potentials unbounded below. Discrete and Continuous Dynamical Systems, 2023, 43(11): 3940-3968
doi: 10.3934/dcds.2023073 |
| [6] | An X, Yang X. Convergence from power-law to logarithm-law in nonlinear fractional Schrödinger equations. J Math Phys, 2023, 64(1): Art 011506 |
| [7] | An X, Yang X. Semiclassical solutions for fractional logarithmic Schrodinger equations with potentials unbounded below. Topol Methods Nonlinear Anal, 2024, 64: 383-407 |
| [8] |
Ardila A H. Existence and stability of standing waves for nonlinear fractional Schrödinger equation with logarithmic nonlinearity. Nonlinear Analysis, 2017, 155: 52-64
doi: 10.1016/j.na.2017.01.006 |
| [9] |
Cazenave T. Stable solutions of the logarithmic Schrödinger equation. Nonlinear Anal, 1983, 7: 1127-1140
doi: 10.1016/0362-546X(83)90022-6 |
| [10] | Chen W, Li Y, Ma P. The Fractional Laplacian. Singapore: World Scientific Publishing, 2019 |
| [11] |
d'Avenia P, Squassina M, Zenari M. Fractional logarithmic Schrödinger equations. Math Meth Appl Sci, 2015, 38: 5207-5216
doi: 10.1002/mma.v38.18 |
| [12] |
Di Nezza E, Palatucci G, Valdinoci E. Hitchhiker's guide to the fractional Sobolev spaces. Bull Sci Math, 2012, 136(5): 521-573
doi: 10.1016/j.bulsci.2011.12.004 |
| [13] | Dipierro S, Medina M, Valdinoci E. Fractional Elliptic Problems with Critical Growth in the Whole of $\mathbb{R}^n$.Pisa Edizioni della Normale, 2017 |
| [14] | Dipierro S, Medina M, Valdinoci E. Existence and symmetry results for a Schrödinger type problem involving the fractional Laplacian. Matematiche, 2013, 68: Article 1 |
| [15] |
Dong H, Kim D. On $L^p$-estimates for a class of non-local elliptic equations. J Funct Anal, 2012, 262: 1166-1199
doi: 10.1016/j.jfa.2011.11.002 |
| [16] |
Felmer P, Quaas A, Tan J. Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc Roy Soc Edinburgh Sect A, 2012, 142: 1237-1262
doi: 10.1017/S0308210511000746 |
| [17] | Figueiredo G M, Siciliano G. A multiplicity result via Ljusternick-Schnirelmann category and Morse theory for a fractional Schrödinger equation in $\mathbb{R}^N$. Nonlinear Diff Eq Appl, 2016, 23: Art 12 |
| [18] |
Frank L, Lenzmann E. Uniqueness of non-linear ground states for fractional Laplacians in R. Acta Math, 2013, 210: 261-318
doi: 10.1007/s11511-013-0095-9 |
| [19] |
Frank L, Lenzmann E, Silvestre L. Uniqueness of radial solutions for the fractional Laplacians. Comm Pure Appl Math, 2016, 69: 1671-1726
doi: 10.1002/cpa.v69.9 |
| [20] | Guerrero P, López J L, Nieto J. Global $H^1$ solvability of the 3D logarithmic Schrödinger equation. Nonlinear Anal Real World Appl, 2010, 1: 79-87 |
| [21] |
Kabeya Y, Tanaka K. Uniqueness of positive radial solutions of semilinear elliptic equations in $\mathbb{R}^N$ and Séré's non-degeneracy condition. Comm Partial Differential Equations, 1999, 24: 563-598
doi: 10.1080/03605309908821434 |
| [22] |
Kwong M K. Uniqueness of positive solutions of $-\Delta u - u + u^p = 0$ in $\mathbb{R}^n$. Arch Ration Mech Anal, 1989, 105(3): 243-266
doi: 10.1007/BF00251502 |
| [23] | Laskin N. Fractional Schrödinger equation. Phys Rev E, 2002, 66(5): Art 056108 |
| [24] |
Laskin N. Fractional quantum mechanics and Levy path integrals. Phys Lett A, 2000, 268: 298-305
doi: 10.1016/S0375-9601(00)00201-2 |
| [25] |
Lions P L. Symétrie et compacité dans les espaces de Sobolev. J Funct Anal, 1982, 49: 315-334
doi: 10.1016/0022-1236(82)90072-6 |
| [26] |
McLeod K, Serrin J. Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb{R}^n$. Arch Rat Mech Anal, 1987, 99: 115-145
doi: 10.1007/BF00275874 |
| [27] | McLeod M. Uniqueness of positive radial solutions of $\Delta u + f(u) = 0$ in $\mathbb{R}^n$: II. Trans Am Math Soc, 1993, 339: 495-505 |
| [28] |
Serrin J, Tang M. Uniqueness of ground states for quasilinear elliptic equations. Indiana Univ Math J, 2000, 29: 897-923
doi: 10.1512/iumj.1980.29.29061 |
| [29] |
Servadei R, Valdinoci E. Weak and viscosity solutions of the fractional Laplace equation. Publ Mat, 2014, 58: 133-154
doi: 10.5565/PUBLMAT_58114_06 |
| [30] |
Squassina M, Szulkin A. Multiple solutions to logarithmic Schrödinger equations with periodic potential. Calc Var Partial Differential Equations, 2015, 54: 585-597
doi: 10.1007/s00526-014-0796-8 |
| [31] |
Szulkin A. Minimax principles for lower semicontinuous functions and applications to nonlinear boundary value problems. Ann Inst H Poincaré Anal Non Linéaire, 1986, 3: 77-109
doi: 10.4171/aihpc |
| [32] | Tanaka K, Zhang C. Multi-bump solutions for logarithmic Schrödinger equations. Calc Var Partial Differ Equ, 2017, 56: Article 33 |
| [33] |
Wang Z Q, Zhang C. Convergence from power-law to logarithm-law in nonlinear scalar field equations. Arch Ration Mech Anal, 2019, 231(1): 45-61
doi: 10.1007/s00205-018-1270-0 |
| [34] | Zhang C, Zhang X. Bound states for logarithmic Schrödinger equations with potentials unbounded below. Calc Var, 2020, 59: Article 23 |
| [35] |
Zloshchastiev K G. Logarithmic nonlinearity in theories of quantum gravity: Origin of time and observational consequences. Gravit Cosmol, 2010, 16: 288-297
doi: 10.1134/S0202289310040067 |
| [1] | Pengjie Liu, Hu Shao, Jiayi Li, Duanduan Dong. An Inertial Three-Term Conjugate Gradient Projection Method Based on BFGS Update [J]. Acta mathematica scientia,Series A, 2025, 45(5): 1698-1710. |
| [2] | Wang Qiongqiong, Tang Jia. Hessenberg-Type Algorithm for PageRank Acceleration Based on Chebyshev Polynomials [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1291-1300. |
| [3] | Yu Dongmei, Liu Dayi. The Levenberg-Marquardt Algorithm for Solving the Generalized Complementarity Problems [J]. Acta mathematica scientia,Series A, 2025, 45(4): 1311-1326. |
| [4] | Wang Wujing, Zhu Meiling, Zhang Yongle. A New Projection Algorithm for Solving Quasimonotone Variational Inequality Problems and Fixed Point Problems [J]. Acta mathematica scientia,Series A, 2025, 45(1): 236-255. |
| [5] | Ma Changfeng, Xie Yajun, Bu Fan. The Tensor Scheme BCGSTAB Algorithm for Solving Stein Tensor Equations [J]. Acta mathematica scientia,Series A, 2024, 44(6): 1652-1664. |
| [6] | Wang Junjie. Symplectic Difference Scheme for the Space Fractional KGS Equations [J]. Acta mathematica scientia,Series A, 2024, 44(5): 1319-1334. |
| [7] | Yu Ting, Dong Ying. The Convergence Rate of the Fast Signal Diffusion Limit for a Three-Dimensional Keller-Segel-Stokes System [J]. Acta mathematica scientia,Series A, 2024, 44(4): 925-945. |
| [8] | Ma Xiaojun, Chen Fu, Jia Zhifu. Research on a Strong Convergence Theorem for Proximal Split Feasibility Problems with Non-Lipschitz Stepsizes [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1052-1065. |
| [9] | Jian Jinbao, Dai Yu, Yin Jianghua. An Inertial Conjugate Gradient Projection Method for the Split Feasibility Problem [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1066-1079. |
| [10] | Nie Jialin, Long Xianjun. A Golden Ratio Primal-Dual Algorithm for a Class of Nonsmooth Saddle Point Problems [J]. Acta mathematica scientia,Series A, 2024, 44(4): 1080-1091. |
| [11] | Zhang Xiao, Zhang Hongwu. Fractional Tikhonov Regularization Method for an Inverse Boundary Value Problem of the Fractional Elliptic Equation [J]. Acta mathematica scientia,Series A, 2024, 44(4): 978-993. |
| [12] |
Zhang Jie, Sun Yiming, Liu Yongping.
EC-tractability of Multivariate |
| [13] | Liu Hua, Basma Al-Shutnawi. On Convergence Sets of Power Series with Holomorphic Coefficients [J]. Acta mathematica scientia,Series A, 2024, 44(3): 563-574. |
| [14] | Wang Weimin, Yan Wei. Convergence Problem and Dispersive Blow-up for the Modified Kawahara Equation [J]. Acta mathematica scientia,Series A, 2024, 44(3): 595-608. |
| [15] | Liu Jinghua, Li Lin. Homeomorphic Solutions of Iterative Functional Equations [J]. Acta mathematica scientia,Series A, 2024, 44(2): 313-325. |
|
||