Acta mathematica scientia,Series A ›› 2025, Vol. 45 ›› Issue (6): 1854-1874.

Previous Articles     Next Articles

Global Well-Posedness and Optimal Decay for the Lower Regularity Solution of Boltzmann Equation

Huan Luo, Haoguang Li*()   

  1. South-Central Minzu University, School of Mathematics and Statistics, Wuhan 430074
  • Received:2025-04-28 Revised:2025-07-21 Online:2025-12-26 Published:2025-11-18
  • Contact: Haoguang Li E-mail:actams@wipm.ac.cn
  • Supported by:
    Natural Science Foundation of Hubei province, China(2025AFB696)

Abstract:

For $\frac{3}{2} < p \leq \infty$, when the norm of the initial data $\|\mathcal{F}_x f_0\|_{L^1 \cap L^p \cap \mathcal{X}^{-p}(\mathbb{R}^3_{\xi}; L^2(\mathbb{R}^3_v))}$ is sufficiently small, we construct global solutions to the Cauchy problem for the non-cutoff Boltzmann equation near equilibrium in the whole space $\mathbb{R}^3$. Here, $\mathcal{F}_x f_0(\xi, v)$ denotes the Fourier transform of $f_0(x, v)$ with respect to the spatial variable $x$, and $\mathcal{X}^{-p}$ is the $L^p$ space incorporating a Hardy potential.Compared to the $L^1_{\xi} \cap L^p_{\xi}$ space used in [15], we consider the low-regularity Sobolev space $L^1_{\xi} \cap L^p_{\xi} \cap \mathcal{X}^{-p}_{\xi}$ in the whole-space framework. Under the energy method framework, we establish a priori estimates to close the argument, thereby obtaining global solutions. In particular, we also derive the decay estimate, for any arbitrarily small $\delta>0,$

$\|f(t)\|_{L^1_{\xi}L^2_v}\lesssim(1+t)^{-\frac{3}{2}(1-\frac{1}{p})+\delta}.$

Key words: Boltzmann equation, global solution, energy method, $(L^1_{\xi}\cap L^p_{\xi}\cap\mathcal{X}^{-p}_{\xi})L^2_v$ space.

CLC Number: 

  • O175.23
Trendmd