数学物理学报, 2020, 40(3): 756-783 doi:

论文

R3上带乘法噪声的非自治随机FitzHugh-Nagumo系统的随机指数吸引子

韩宗飞, 周盛凡,

Random Exponential Attractor for Non-Autonomous Stochastic FitzHugh-Nagumo System with Multiplicative Noise in R3

Han Zongfei, Zhou Shengfan,

通讯作者: 周盛凡, E-mail: zhoushengfan@yahoo.com

收稿日期: 2019-03-29  

基金资助: 国家自然科学基金.  11871437
国家自然科学基金.  11971356

Received: 2019-03-29  

Fund supported: the NSFC.  11871437
the NSFC.  11971356

摘要

该文考虑非自治随机FitzHugh-Nagumo系统的随机指数吸引子(具有有限分形维数且指数吸引轨道的正不变紧可测集)的存在性,这表明该系统解的长期行为可以用有限个独立参数刻画.证明的关键是系统的解的尾估计和分解系统的两解之差为三部分,其中一部分属于有限维空间,另外两部分在时间变量和空间变量充分大时都变得足够小.

关键词: 非自治随机FitzHugh-Nagumo系统 ; 随机指数吸引子 ; 乘法白噪声 ; 分形维数

Abstract

The article considers the existence of a random exponential attractor (positive invariant compact measurable set with finite fractal dimension and attracting orbits exponentially) for non-autonomous stochastic FitzHugh-Nagumo system in R3, which deduces that the long-term behavior of solutions of system can be characterized by finite independent parameters. The proof is based on the "tail" estimation of solutions of systems and decomposing the difference of two solutions into three parts that one part belongs to finite-dimensional space and both of other two parts become small enough when both time variable and space variable are large enough.

Keywords: Non-autonomous stochastic FitzHugh-Nagumo system ; Random exponential attractor ; Multiplicative white noise ; Fractal dimension

PDF (467KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

韩宗飞, 周盛凡. R3上带乘法噪声的非自治随机FitzHugh-Nagumo系统的随机指数吸引子. 数学物理学报[J], 2020, 40(3): 756-783 doi:

Han Zongfei, Zhou Shengfan. Random Exponential Attractor for Non-Autonomous Stochastic FitzHugh-Nagumo System with Multiplicative Noise in R3. Acta Mathematica Scientia[J], 2020, 40(3): 756-783 doi:

1 引言

吸引子是描述无穷维维动力系统的渐近行为的重要概念,参见文献[1-17].然而,尽管吸引子具有紧性,但它可能是无穷维的.这意味着只有用无穷多个参数才能刻画无穷维动力系统的渐近行为.另一方面,吸引子吸引轨道的速度可能是任意慢的,从而吸引子在扰动下是不稳定的.为克服以上两点缺陷, Eden等[18]提出了指数吸引子的概念,它是具有有限分形维数且以指数速率吸引轨道的紧的正不变集.用不同的方法将这一概念推广到非自治动力系统,可以得到两类指数吸引子:拉回和一致指数吸引子,参见文献[19-24].

Shirikyan等[25]将指数吸引子推广到自治随机动力系统的随机指数吸引子并给出它的一些存在条件.与文献[25]相比较, Caraballo等[26]减弱了文献[25]中随机指数吸引子的存在条件.最近,周盛凡等[27-29]将指数吸引子的概念推广到连续余圈(非自治随机动力系统)的随机指数吸引子,建立了随机指数吸引子存在的判据,并应用这一判据证明了随机格点系统、无界域上的随机反应扩散方程、有界域上的随机波动方程的随机指数吸引子的存在性.相比文献[25-26]中的存在性条件,周盛凡等给出的判据更容易验证.

FitzHugh-Nagumo系统是模拟信号在轴突间传递的模型,参见文献[30-31].本文研究如下$ {{\Bbb R}} ^{3} $上的随机FitzHugh-Nagumo系统的解的渐近行为

$ \begin{equation} \left\{ \begin{array}{l} {\rm d}\tilde{u}_{1}+(\lambda \tilde{u}_{1}-\Delta \tilde{u}_{1}+\alpha \tilde{u} _{2}){\rm d}t = (f(x, \tilde{u}_{1})+g_{1}(x, t)){\rm d}t+b\tilde{u}_{1}\circ {\rm d}W(t), \, \, \, t>\tau , \\ {\rm d}\tilde{u}_{2}+(\sigma \tilde{u}_{2}-\beta \tilde{u}_{1}){\rm d}t = g_{2}(x, t){\rm d}t+b \tilde{u}_{2}\circ {\rm d}W(t), \\ \tilde{u}_{1}(x, \tau ) = \tilde{u}_{1, \tau }(x), \; \; \tilde{u}_{2}(x, \tau ) = \tilde{u}_{2, \tau }(x), \; \; x\in {{\Bbb R}} ^{3}, \tau \in {{\Bbb R}} , \end{array} \right. \end{equation} $

其中$ \tilde{u}_{i} = \tilde{u}_{i}(x, t) $$ (i = 1, 2) $是定义在$ {{\Bbb R}} ^{3}\times \lbrack \tau , +\infty ) $上的实值函数,系数$ \lambda $, $ \alpha, $$ \sigma, $$ \beta $$ b $是正常数. $ W(t) $是定义在概率空间$ (\Omega , {\cal F}, {{\Bbb P}}) $上的双边实值布朗运动,这里$ \Omega = \{\omega \in {C}({{\Bbb R}} , {{\Bbb R}} ): \omega (0) = 0\}, $$ {\cal F} $是由$ \Omega $上的紧开拓扑产生的Borel $ \sigma $ -代数, $ {\Bbb P} $$ {\cal F} $上相应的Wiener测度.取布朗运动的实现为$ W(t) = W(t, \omega ) = \omega (t) $, $ \omega \in \Omega $, $ t\in {{\Bbb R}} $.符号$ "\circ " $表示随机积分是在斯特拉托诺维奇(Stratonovich)意义下.函数$ g_{1} $, $ g_{2} $, $ f $满足以下假设:

(A1) $ g_{i}\in C({{\Bbb R}} ^{3}\times {{\Bbb R}} , {{\Bbb R}} ) $, $ g_{i}(x, \cdot )\in C({{\Bbb R}} , $$ L^{2}({{\Bbb R}} ^{3})) $, $ \sup\limits_{t\in {{\Bbb R}} }\|g_{i}(\cdot , t)\|^{2}<\infty $, $ i = 1, 2 $,且对任意$ \varepsilon >0 $,存在$ R_{{i}, \varepsilon }\geq 0 $使得$ \sup\limits_{r\in {{\Bbb R}} }\int_{|x|\geq R_{{i}, \varepsilon }}g_{i}^{2}(x, r){\rm d}x\leq \varepsilon $,这里$ \Vert \cdot \Vert $表示$ L^{2}({{\Bbb R}} ^{3}) $的范数.

(A2)存在函数$ \beta _{1}\in L^{1}({{\Bbb R}} ^{3}, {{\Bbb R}} _{+}), $$ \beta _{2}, $$ \beta_{3}\in L^{2}({{\Bbb R}} ^{3}, {{\Bbb R}} _{+}), $$ \beta _{4}\in L^{3}({{\Bbb R}} ^{3}, {{\Bbb R}} _{+}) $和正常数$ c_{1}, $$ c_{2}, $$ c_{3}>0 $使得

$ \begin{equation} \left\{ \begin{array}{l} uf(x, u)\leq \beta _{1}(x), \quad |f(x, u)|\leq c_{1}|u|^{3}+\beta _{2}(x), \\ { }\left\vert \frac{\partial f}{\partial x}(x, u)\right\vert \leq \beta _{3}(x), \quad \frac{\partial f}{\partial u}(x, u)\leq c_{2}, \\ { }\left\vert \frac{\partial f}{\partial u}(x, u)\right\vert \leq c_{3}u^{2}+\beta _{4}(x), \quad \end{array} \right. \quad u\in {{\Bbb R}} , \, \, x\in {{\Bbb R}} ^{3}. \end{equation} $

关于有界或无界域上的确定性或随机FitzHugh-Nagumo系统的各种吸引子的研究已有许多结果[32-42].但至今尚无在无界域上的随机FitzHugh-Nagumo系统的随机指数吸引子的相关结果.

本文讨论FitzHugh-Nagumo系统(1.1)的随机指数吸引子的存在性.文献[29]的定理2.1给出了连续余圈存在随机指数吸引子的判据.注意到由于其(3.45)式中$ t\geq \frac{4}{\sigma }\ln (1+\frac{2\alpha \beta}{\sigma ^{2}}) $的限制,在证明系统(1.1)存在随机指数吸引子时,不能直接验证文献[29]中定理2.1的条件$ ({\rm H}3) $.本文修改了文献[29]中定理2.1的条件$ ({\rm H}3) $并得到可分Banach空间上的连续余圈存在随机指数吸引子的新判据(见定理2.1).根据这个新判据,论文证明了系统(1.1)存在随机指数吸引子.为此,需要对系统(1.1)的解在$ H^{1}({{\Bbb R}} ^{3})\times L^{2}({{\Bbb R}} ^{3}) $ (注意到系统(1.1)的第二个分量$ \tilde{u}_{2} $没有任何光滑性)中做尾部估计并在$ L^{2}({\Bbb {{\Bbb R}} }^{3})\times L^{2}({\Bbb {{\Bbb R}} }^{3}) $中将系统的两解之差分解成三部分,其中一部分属于有限维空间,另外两部分在时间变量和空间变量充分大时变得足够小.值得一提的是,本文所采用的方法不需要证明第二个分量$ \tilde{u}_{2} $有较高的正则性,这与文献[42]中有界域上的FitzHugh-Nagumo系统(1.1)存在随机吸引子的证明不同.

本文结构安排如下:第2节简要回顾随机指数吸引子的相关知识并给出随机指数吸引子存在的新判据.第3节证明FitzHugh-Nagumo系统(1.1)存在随机指数吸引子.

2 预备知识

本节我们给出可分Banach空间上的连续余圈的随机指数吸引子存在的新判据.

$ (X, \| X\|_{X}) $是可分Banach空间, $ {\cal B}(X) $是其Borel $ \sigma $ -代数. $ X $中任意子集$ F_{1}, F_{2} $的Hausdorff半距离定义为$ {\rm d}_{h}(F_{1}, F_{2}) = \sup\limits_{u\in F_{1}}\inf\limits_{v\in F_{2}}\|u-v\|_{X} $.$ (\Omega , {\cal F}, {\Bbb P}, \{\theta _{t}\omega \}_{t\in {{\Bbb R}} }) $是遍历度量动力系统[9].随机变量$ \gamma _{\omega } $称为关于$ \{\theta _{t}\omega \}_{t\in {{\Bbb R}} } $是缓增的,如果对于a.e. $ \omega \in \Omega $,有$ \limsup\limits_{t\rightarrow \infty }e^{-\epsilon |t|}|\gamma _{\theta_{t}\omega }| = 0 $ ($ \forall $$ \epsilon >0) $,参见文献[9].

定义2.1[12]  称$ X $的一族非空子集$ D = \{D(\tau, \omega )\subset X:\tau \in {{\Bbb R}} , \omega \in \Omega \} $关于$ \{\theta _{t}\omega\}_{t\in {{\Bbb R}} } $是缓增的,如果对任意的$ \tau \in {{\Bbb R}} $及a.e. $ \omega \in \Omega $, $ \lim\limits_{t\rightarrow -\infty }e^{\epsilon t}\| D(\tau +t, \theta _{t}\omega )\|_{X} = 0 $, $ \forall\epsilon >0 $,其中$ \|D(\tau , \omega )\|_{X} = \sup\limits_{x\in D(\tau , \omega )}\|x\|_{X} $.

$ {\cal D}(X) $表示$ X $的所有缓增集族构成的集合.

定义2.2[12]  称映射$ \Psi :{{\Bbb R}} ^{+}\times{{\Bbb R}} \times\Omega \times X\rightarrow X $$ {{\Bbb R}} $$ (\Omega , {\cal F}, {\Bbb P}, \{\theta _{t}\omega \}_{t\in {{\Bbb R}} }) $驱动的空间$ X $上的连续余圈,如果: (ⅰ) $ \Psi (\cdot, \tau , \cdot , \cdot ) $: $ {{\Bbb R}} ^{+}\times \Omega \times X\rightarrow X $$ ({\cal B}({{\Bbb R}} ^{+})\times {\cal F}\times {\cal B}(X), {\cal B}(X)) $ -可测的; (ⅱ) $ \Psi (0, \tau , \omega , \cdot ) $$ X $上的恒等映射; (ⅲ) $ \Psi (t+s, \tau , \omega , \cdot ) = \Psi (t, \tau +s, \theta _{s}\omega , \Psi (s, \tau , \omega , \cdot )) $, $ \forall t, s\geq 0 $, $ \tau\in {{\Bbb R}} $; (ⅳ) $ \Psi (t, \tau , \omega , \cdot ) $: $ X\rightarrow X $是连续的.

定义2.3[27]  称$ X $的非空子集族$ \{{\cal E}(\tau , \omega )\}_{\tau \in {{\Bbb R}} , \omega \in \Omega } $是连续余圈$ \{\Psi (t, \tau , \omega )\}_{t\geq 0, \tau \in {{\Bbb R}} , \omega \in \Omega } $$ {\cal D}(X) $ -随机指数吸引子,如果存在全测集$ \tilde{\Omega}\in {\cal F} $使得对任意$ \tau \in {{\Bbb R}} $$ \omega \in \tilde{\Omega} $,满足: (ⅰ) $ {\cal E}(\tau , \omega ) $$ X $中的紧子集且关于$ \omega $可测; (ⅱ)存在随机变量$ \varsigma _{\omega } $$ (<\infty ) $使得分形维数$ \sup\limits_{\tau \in {{\Bbb R}} }\dim _{f} {\cal E}(\tau , \omega )\leq \varsigma _{\omega } $,其中$ \dim _{f}{\cal E}(\tau , \omega ) = \limsup\limits_{\varepsilon \rightarrow 0+}\frac{\ln N_{\varepsilon }({\cal E}(\tau , \omega ))}{-\ln \varepsilon } $, $ N_{\varepsilon }({\cal E}(\tau , \omega )) $$ X $中能覆盖$ {\cal E}(\tau , \omega ) $所需的半径为$ \varepsilon $的球的最小个数; (ⅲ) $ \Psi (t, \tau -t, \theta _{-t}\omega ){\cal E}(\tau -t, \theta _{-t}\omega )\subseteq {\cal E}(\tau, \omega ) $, $ \forall t\geq0 $;(ⅳ)存在常数$ \tilde{a}>0 $,使得对任意$ B\in {\cal D}(X) $,存在随机变量$ t_{B}(\tau , \omega )\geq 0 $$ Q(\tau , \omega , \|B\|_{X})>0 $满足

在下文中,为方便起见,将" a.e. $ \omega \in \Omega $"写为"$ \omega \in \Omega $".基于文献[29]中定理2.1的证明,将该定理证明稍作修正和改进可得到如下定理:

定理2.1  令$ \{\Psi (t, \tau , \omega)\}_{t\geq 0, \tau \in {{\Bbb R}} , \omega \in \Omega } $$ {{\Bbb R}} $$ (\Omega , {\cal F}, {\Bbb P}, \{\theta _{t}\omega \}_{t\in {{\Bbb R}} }) $驱动的可分Banach空间$ X $上的连续余圈.假设

(H1)   存在$ X $的缓增的随机闭子集族$ \{\check{\chi}(\tau , \omega )\}_{\tau \in {{\Bbb R}} , \omega \in \Omega } $使得对任意$ \tau \in {{\Bbb R}} $$ \omega \in \Omega $,

(h11)   $ \check{\chi}(\tau , \omega) $的直径有界,即$ \sup\limits_{\tau \in {{\Bbb R}} }\sup\limits_{u, v\in \check{\chi}(\tau , \omega)}\|u-v\|_{X}\leq R_{\omega }<\infty , $其中$ R_{\omega } $ (独立于$ \tau $)是缓增随机变量且$ R_{\theta_{t}\omega } $关于$ t\in {{\Bbb R}} $连续;

(h12)   $ \check{\chi}(\tau, \omega ) $是正不变的,即$ \Psi (t, \tau -t, \theta _{-t}\omega )\check{\chi }(\tau -t, \theta _{-t}\omega )\subseteq \check{\chi}(\tau , \omega ) $, $ \forall t\geq 0 $;

(H2)   存在正常数$ \hat{\lambda} $, $ \hat{\delta} $, $ \hat{t}_{0} $,随机变量$ \hat{C}_{0}(\omega) $, $ \hat{C}_{1}(\omega) \geq 0 $$ N $ -维投影$ P_{N} $: $ X\rightarrow P_{N}X $ {\rm($ \dim (P_{N}X) = N\in{\Bbb N} $)},使得对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega $$ u, v\in\check{\chi}(\tau, \omega) $,有

其中$ \hat{\lambda} $, $ \hat{\delta} $, $ \hat{t}_{0} $, $ N $$ \tau $$ \omega $无关;

(H3) $ \hat{C}_{0}(\omega ), $$ \hat{C}_{1}(\omega ), $$ \hat{\lambda} $, $ \hat{t}_{0}, $$ \hat{\delta} $满足:

其中"$ {\bf E} $"表示期望.

那么$ \{\Psi (t, \tau , \omega )\}_{t\geq 0, \tau \in {{\Bbb R}} , \omega \in \Omega } $存在一个随机指数吸引子$ \{{\cal E}(\tau , \omega )\}_{\tau \in {{\Bbb R}} , \omega \in \Omega} $,且具有以下性质:对任意$ \tau \in {{\Bbb R}} $$ \omega \in\Omega $,

(ⅰ) $ {\cal E}(\tau, \omega ) $$ (\subseteq \check{\chi}(\tau, \omega)) $$ X $中的紧集,且关于$ \omega $可测;

(ⅱ) $ \Psi (t, \tau -t, \theta _{-t}\omega ){\cal E}(\tau -t, \theta _{-t}\omega )\subseteq {\cal E}(\tau , \omega ) $, $ \forall t\geq 0 $;

(ⅲ) $ \dim _{f}{\cal E}(\tau , \omega )\leq \frac{2N\ln \left(\frac{2\sqrt {N}}{\hat{\delta}}+1\right)}{\ln \frac{4}{3}}<\infty $;

(ⅳ)存在随机变量$ \tilde{T}_{\omega }\geq 0 $和缓增随机变量$ \breve{b}_{\omega }>0 $,使得

  注意到该定理的条件与文献[29]中定理2.1的条件中唯一不同的是关于$ \hat{C}_{0}(\omega ), $$ \hat{C}_{1}(\omega ) $, $ \hat{ \lambda} $, $ \hat{t}_{0} $, $ \hat{\delta} $的条件(H3).条件(H3)来自以下要求:对任意固定$ \omega \in \Omega $$ m\in{\Bbb Z} $,存在整数$ n_{0}(\omega )\in {\Bbb N} $使得对任意$ n\geq n_{0}(\omega ) $, $ \prod\limits_{l = 1}^{n}a_{ \theta _{(m-l)\hat{t}_{0}}\omega } $满足

$ \begin{equation} \prod\limits_{l = 1}^{n}a_{\theta _{(m-l)\hat{t}_{0}}\omega }\leq\left( \frac{3}{4} \right) ^{n}, \end{equation} $

其中

现在证明条件(H3)能推出(2.1)式,这其实是对定理2.1[29]的证明中的相应部分的改进.令

$ \begin{equation} J = \left\{ \omega \in \Omega :\int_{0}^{\hat{t}_{0}}[\hat{C}_{0}(\theta _{s}\omega )-\hat{C}_{1}(\theta _{s}\omega )]{\rm d}s+\hat{\lambda}\hat{t}_{0}>\ln \frac{1}{\hat{\delta}}\right\} . \end{equation} $

(a)若$ \theta _{(m-l)\hat{t}_{0}}\omega \in J, $那么

(b)若$ \theta _{(m-l)\hat{t}_{0}}\omega \notin J, $那么

根据(H3),可得$ 2e^{-\frac{\hat{\lambda}\hat{t}_{0}}{2}}\leq \frac{1}{ 2} $, $ 8\hat{\delta}e^{\frac{\hat{\lambda}\hat{t}_{0}}{2}}\leq 2 $,且

$ \begin{eqnarray} \prod\limits_{l = 1}^{n}a_{\theta _{(m-l)\hat{t}_{0}}\omega } &\leq& \left( 4\hat{\delta}\right) ^{^{k_{1}}}e^{\sum\limits_{l = 1}^{n}\vartheta _{J}(\theta _{(m-l)\hat{t}_{0}}\omega )\cdot \int_{(m-l)\hat{t}_{0}}^{(m-l+1) \hat{t}_{0}}\hat{C}_{0}(\theta _{s}\omega ){\rm d}s} {} \\ &&\times 4^{k_{2}}e^{\sum\limits_{l = 1}^{n}[1-\vartheta _{J}(\theta _{(m-l) \hat{t}_{0}}\omega )]\left( -\hat{\lambda}\hat{t}_{0}+\int_{(m-l)\hat{t} _{0}}^{(m-l+1)\hat{t}_{0}}\hat{C}_{1}(\theta _{s}\omega ){\rm d}s\right) } {} \\ &\leq &\frac{1}{2^{k_{1}}}\left( 2e^{-\frac{\hat{\lambda}\hat{t}_{0}}{2} }\right) ^{^{k_{2}}}e^{\sum\limits_{l = 1}^{n}\vartheta _{J}(\theta _{(m-l)\hat{t} _{0}}\omega )\cdot \int_{(m-l)\hat{t}_{0}}^{(m-l+1)\hat{t}_{0}}\hat{C} _{0}(\theta _{s}\omega ){\rm d}s} {} \\ &&\times 2^{k_{2}}\left( 8\hat{\delta}e^{\frac{\hat{\lambda}\hat{t}_{0} }{2}}\right) ^{^{k_{1}}}e^{-\frac{\hat{\lambda}\hat{t}_{0}}{2}k_{1}-\frac{ \hat{\lambda}\hat{t}_{0}}{2}k_{2}+\sum\limits_{l = 1}^{n}[1-\vartheta _{J}(\theta _{(m-l)\hat{t}_{0}}\omega )]\int_{(m-l)\hat{t}_{0}}^{(m-l+1)\hat{t}_{0}}\hat{ C}_{1}(\theta _{s}\omega ){\rm d}s} {} \\ &\leq &\left( \frac{1}{2}\right) ^{^{n}} e^{\sum\limits_{l = 1}^{n}\vartheta _{J}(\theta _{(m-l)\hat{t}_{0}}\omega )\cdot \int_{(m-l)\hat{t}_{0}}^{(m-l+1) \hat{t}_{0}}\hat{C}_{0}(\theta _{s}\omega ){\rm d}s}{}\\ &&\times 2^{n}e^{-\frac{\hat{ \lambda}\hat{t}_{0}}{2}n+\sum\limits_{l = 1}^{n} \int_{(m-l)\hat{t}_{0}}^{(m-l+1)\hat{t }_{0}} \hat{C}_{1}(\theta _{s}\omega ){\rm d}s}, \end{eqnarray} $

其中$ \vartheta _{J}(\omega ) = \left\{ \begin{array}{ll} 1, & \omega \in J, \\ 0, & \omega \notin J. \end{array} \right. $由Birkhoff遍历定理[9]可得$ {\bf E[}\hat{C}_{i}^{2}(\theta _{s}\omega )] = {\bf E[}\hat{C}_{i}^{2}(\omega )] $, $ s\in {{\Bbb R}} $, $ i = 0, 1 $,且

从以上两式知,对于任意$ \omega \in \Omega $,存在整数$ n_{0}(\omega )\in {\Bbb N} $使得,对任意$ n\geq n_{0}(\omega) $

根据(2.2)式和Hölder不等式可知,对$ n\geq n_{0}(\omega ) $

由(H3)可以推出, $ 2e^{-\frac{\hat{\lambda}\hat{t}_{0}}{4}}\leq 1 $,因此

根据(2.3)式可以得到

证明的其余部分类似于文献[29,定理2.1]中相应的部分.

3 随机指数吸引子的存在性

在这一节中,考虑系统(1.1)的解产生的连续余圈的随机指数吸引子的存在性.这里我们总是假设(1.1)中的函数$ f, $$ g_{1}, $$ g_{2} $满足条件(A1)–(A2),概率空间$ (\Omega , {\cal F}, {\Bbb P}) $如引言中所定义.

$ (\cdot , \cdot ) $, $ \|\cdot\| $$ (\cdot , \cdot )_{1} $, $ \|\cdot\|_{1} $分别表示$ L^{2}({{\Bbb R}} ^{3}) $$ H^{1}({{\Bbb R}} ^{3}) $的内积和诱导范数,其中

$ E = L^{2}({{\Bbb R}} ^{3})\times L^{2}({{\Bbb R}} ^{3}) $$ E_{1} = H^{1}({{\Bbb R}} ^{3})\times L^{2}({{\Bbb R}} ^{3}) $是分别具有如下内积的Hilbert空间

$ \| \cdot \|_{E} $$ \|\cdot \| _{E_{1}} $表示相应的诱导范数.由嵌入$ H^{1}({{\Bbb R}} ^{3})\hookrightarrow L^{6}({{\Bbb R}} ^{3}) $[43]知,存在$ C_{0}>0 $使得

$ \begin{equation} \|u\|_{L^{6}({{\Bbb R}} ^{3})}\leq C_{0}\|u\|_{1} = C_{0}(\|\nabla u\|^{2}+\|u\|^{2})^{\frac{1}{2}}, \quad \forall u\in H^{1}({{\Bbb R}} ^{3}). \end{equation} $

定义样本空间$ \Omega $上的映射群$ \{\theta _{t}\}_{t\in {{\Bbb R}} } $,其中$ \theta _{t}\omega (\cdot ) = \omega (t+\cdot )-\omega (t) $, $ \omega \in \Omega $, $ t\in {{\Bbb R}} $,那么$ (\Omega , {\cal F}, {\Bbb P}, \{\theta _{t}\}_{t\in {{\Bbb R}} }) $是遍历度量动力系统.注意到$ z(\theta_{t}\omega ) = -\int_{-\infty }^{0}e^{s}(\theta _{t}\omega )(s){\rm d}s $$ (t\in {{\Bbb R}} ) $是方程d$ z+z $d$ t = {\rm d}W(t) $的平稳解,且对任意$ \omega \in \Omega $, $ z(\theta _{t}\omega ) $关于$ t $连续,此外$ \lim\limits_{t\rightarrow \pm \infty }\frac{|z(\theta _{t}\omega )|}{|t|} = \lim\limits_{t\rightarrow \pm \infty }\frac{1}{t}\int_{0}^{t}z(\theta _{s}\omega ){\rm d}s = 0 $,参见文献[14, 44].引进变量变换$ u_{i}(t, \omega, x) = e^{-bz(\theta _{t}\omega )}\tilde{u}_{i}(t, x), $$ i = 1 $, $ 2 $,那么系统(1.1)等价于下面的随机系统:

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{{\rm d}u_{1}}{{\rm d}t}-\Delta u_{1}+\lambda u_{1}-bz(\theta _{t}\omega )u_{1}+\alpha u_{2} = e^{-bz(\theta _{t}\omega )}(f(x, e^{bz(\theta _{t}\omega )}u_{1})+g_{1}(x, t)), \\ { }\frac{{\rm d}u_{2}}{{\rm d}t}+\sigma u_{2}-bz(\theta _{t}\omega )u_{2}-\beta u_{1} = e^{-bz(\theta _{t}\omega )}g_{2}(x, t), \quad t>\tau , \\ u_{i}(\tau , \omega , x) = e^{-bz(\theta _{\tau }\omega )}\tilde{u}_{i, \tau }(x) = u_{i, \tau }(\omega , x), \quad x\in {{\Bbb R}} ^{3}, \tau \in {{\Bbb R}} , i = 1, 2. \end{array} \right. \end{equation} $

由文献[34-35, 38]知,对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega $$ \psi _{\tau }(\omega ) = (u_{1, \tau }(\omega, x), u_{2, \tau }(\omega , x))\in E $,系统(3.2)存在惟一的全局解$ \psi (t, \tau , \omega , \psi _{\tau }) = (u_{1}(t, \tau , \omega , \psi _{\tau }), u_{2}(t, \tau , \omega, \psi _{\tau })) $, $ t\in \lbrack \tau , +\infty ) $,且$ \psi (\cdot , \tau , \omega , \varphi _{\tau })\in C([\tau, +\infty );E)\cap L_{loc}^{2}([\tau , +\infty );E_{1}); $此外, $ \psi(t, \tau , \omega , \psi _{\tau }) $关于$ \omega $可测,关于初值$ \varphi _{\tau } $连续.因此,解映射簇生成一个由$ {{\Bbb R}} $$ (\Omega , {\cal F}, {\Bbb P}, (\theta _{t})_{t\in{{\Bbb R}} }) $驱动的连续余圈$ \Psi :{{\Bbb R}} ^{+}\times {{\Bbb R}} \times \Omega \times E\rightarrow E $,

其中$ \Psi (0, \tau , \omega )\psi _{\tau }(\omega ) = \psi_{\tau }(\theta _{-\tau }\omega ) $.

对任意$ \tau \in {{\Bbb R}} $, $ \omega\in\Omega $$ t\geq 0 $,设$ \psi (r) = \psi (r, \tau -t, \theta _{-\tau }\omega , \psi _{\tau-t}(\theta _{-\tau }\omega )) = (u_{1}(r), u_{2}(r))\in E $ ($ r\geq \tau -t $)是系统(3.2)的具有初值$ \psi (\tau -t) = \psi _{\tau-t}(\theta _{-\tau }\omega )\in E $的解.用$ {\cal D} = {\cal D}(E) $表示$ E $的所有缓增集族$ D = \{D(\tau , \omega)\subseteq E:\tau \in {{\Bbb R}} , \omega \in \Omega \} $所构成的集合.

对任意$ \tau \in {{\Bbb R}}, $$ \omega \in \Omega $$ D\in {\cal D}(E), $

$ \begin{equation} L_{0}^{2}(\omega ) = 1+{c}_{4}Q_{0}(\omega ), \quad Q_{0}(\omega) = \int_{-\infty }^{0}e^{\, \frac{{\rho }}{2}s-2bz(\theta _{s}\omega)+\int_{s}^{0}2bz(\theta _{l}\omega )){\rm d}l}{\rm d}s, \end{equation} $

$ \begin{equation} L_{1}^{2}(\omega ) = {c}_{5}\int_{-1}^{\, 0}e^{-2bz(\theta _{s}\omega )}{\rm d}s+ \left[ \frac{1}{\beta }\left( 1+c_{2}+b\max\limits_{-1\leq s\leq 0}|z(\theta _{s}\omega )|\right) +\frac{4\alpha }{\sigma }\right] \tilde{Q} _{1}^{2}(\omega ), \end{equation} $

其中

$ \begin{equation} \tilde{Q}_{1}^{2}(\omega ) = 1+{c}_{4}Q_{0}(\omega )e^{\, \frac{{\rho }}{2}+\int_{-1}^{0}2b|z(\theta _{l}\omega )|{\rm d}l}, \quad {c}_{5} = \|\beta_{3}\|^{2}+2\|g_{1}\|^{2}, \end{equation} $

$ \begin{equation} L_2^2(\omega) = L_0^2(\omega)+L_1^2(\omega), \end{equation} $

关于系统(3.2)的解有如下结果.

引理3.1  对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega, $

(ⅰ)系统(3.2)的具有初值$ \psi_{\tau-t}(\theta_{-\tau}\omega)\in D(\tau -t, \theta _{-t}\omega ) \in D\in {\cal D}(E) $的解$ \psi(r) = (u_{1}(r), u_{2}(r)) $满足

(ⅱ)系统(3.2)的具有初值$ \psi_{\tau-t}(\theta_{-\tau}\omega)\in D_0(\theta_{-t}\omega ) $的解$ \psi(r) = (u_{1}(r), u_{2}(r)) $满足

(ⅲ)系统(3.2)的具有初值$ \psi_{\tau-t}(\theta_{-\tau}\omega)\in D_0(\theta_{-t}\omega ) $的解$ \psi(r) = (u_{1}(r), u_{2}(r)) $满足

  (ⅰ)取内积$ \big((3.2)_1 $, $ \beta u_{1}\big) $$ \big((3.2)_2 $, $ \alpha u_{2}\big) $并相加,再由以下估计

可得

$ \begin{equation} \frac{\rm d}{{\rm d}t}\Vert \psi \Vert _{E}^{2}+\left( \frac{\rho }{2}-2bz(\theta_{r-\tau }\omega )\right) \Vert \psi \Vert _{E}^{2}+2\beta \Vert \nabla u_{1}\Vert ^{2}+\frac{\sigma \alpha }{2}\Vert u_{2}\Vert ^{2}\leq {c}_{4}e^{-2bz(\theta _{r-\tau }\omega )}. \end{equation} $

对(3.7)式在$ [\tau -t, r] $ ($ r\geq \tau -t $)上应用Gronwall不等式,可得

$ \begin{eqnarray} &&\|\psi (r)\|_{E}^{2}+\int_{\tau -t}^{r}e^{\int_{s}^{r}(2bz(\theta _{l-\tau }\omega )-\frac{{\rho }}{2}){\rm d}l}\left( 2\beta\| \nabla u_{1}(s)\|^{2}+\frac{\sigma \alpha }{2}\|u_{2}(s)\|^{2}\right){\rm d}s {} \\ &\leq &e^{\int_{\tau -t}^{r}(2bz(\theta _{l-\tau }\omega )-\frac{{\rho }}{2}){\rm d}l}\|\psi _{\tau -t}(\theta _{-\tau }\omega )\|_{E}^{2}+{c}_{4}\int_{\tau -t}^{r}e^{-2bz(\theta _{s-\tau }\omega)+\int_{s}^{r}(2bz(\theta _{l-\tau }\omega )-\frac{{\rho }}{2}){\rm d}l}{\rm d}s \end{eqnarray} $

$ \psi _{\tau -t}(\theta _{-\tau }\omega )\in D(\tau -t, \theta_{-t}\omega ) $,知$ \lim\limits_{t\rightarrow \infty}e^{\int_{-t}^{0}2bz(\theta _{s}\omega ){\rm d}s-\frac{{\rho }}{2}t}\|\psi_{\tau -t}(\theta _{-\tau }\omega )\|_{E}^{2} = 0 $. (ⅰ)成立.

(ⅱ)根据(3.8)式和$ \psi _{\tau -t}(\theta _{-\tau }\omega )\in D_{0}(\theta _{-t}\omega ) $可得,对任意$ t\geq 1 $

$ \begin{equation} \|\psi (\tau -1)\|_{E}^{2}\leq \, e^{\int_{-t}^{-1}(2bz(\theta _{s}\omega )-\frac{{\rho }}{2}){\rm d}s}L_{0}^{2}(\theta _{-t}\omega )+{c}_{4}\int_{-t}^{-1}e^{-2bz(\theta _{s}\omega ) +\int_{s}^{-1}(2bz(\theta_{l}\omega )-\frac{{\rho }}{2}){\rm d}l}{\rm d}s. \end{equation} $

对(3.7)式在$ [\tau-1, \tau ] $上应用Gronwall不等式,并由(3.9)式,可推出

$ \begin{eqnarray} &&\Vert \psi (\tau )\Vert _{E}^{2}+\int_{\tau -1}^{\, \tau }e^{\int_{s}^{\tau}(2bz(\theta _{l-\tau }\omega )-\frac{{\rho }}{2}){\rm d}l}\left( 2\beta \Vert\nabla u_{1}(s)\Vert ^{2}+\frac{\sigma \alpha }{2}\Vert u_{2}(s)\Vert^{2}\right){\rm d}s {} \\ &\leq &e^{\int_{-t}^{0}(2bz(\theta _{l}\omega )-\frac{{\rho }}{2}){\rm d}l}L_{0}^{2}(\theta _{-t}\omega )+{c}_{4}Q_0(\omega). \end{eqnarray} $

由于

从(3.10)式可知

进一步有

取内积$ \big((3.2)_1 $, $ -\Delta u_{1}\big) $并由

可知,对$ r\geq \tau-t $

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t} \Vert \nabla u_{1}\Vert ^{2}+\Vert \Delta u_{1}\Vert^{2}+\lambda \Vert \nabla u_{1}\Vert^{2} {} \\ &\leq &\left( 1+2c_{2}+2bz(\theta _{r-\tau }\omega )-\lambda \right) \Vert\nabla u_{1}\Vert ^{2}+2\alpha ^{2}\Vert u_{2}\Vert ^{2}+{c}_{5}e^{-2bz(\theta _{r-\tau }\omega )}. \end{eqnarray} $

$ t\geq {T}_{1, D_{0}}(\omega )\geq 1 $$ s \in [\tau -1, \tau ] $,在$ [s, \tau] $上对(3.11)式积分可得

对上式在$ [\tau -1, \tau ] $上关于$ s $积分可以推出,对$ t\geq {T}_{1, D_{0}}(\omega ) $

其中$ L_{1}(\omega ) $是只依赖$ |z(\omega)| $的随机变量.

(ⅲ)由(ⅰ)和(ⅱ)可知(ⅲ)成立.引理3.1证毕.

接下来考虑解在$ H^1({{\Bbb R}} ^3)\times L^2( {{\Bbb R}} ^3) $中的尾部估计.

对任意$ \tau \in {{\Bbb R}} $$ \omega \in \Omega, $$ T_*(\omega) = T_{D_0}(\omega)+T_{1, D_0}(\omega) $

$ \begin{equation} D_2(\tau - s, \theta_{-s}\omega) = \bigcup\limits_{t\geq \max\{T_{*}(\theta_{-s}\omega), T_{*}(\omega)\}} \Psi(t, \tau - s - t, \theta_{-t-s}\omega)D_0(\theta_{-t-s}\omega), \quad s\geq0, \end{equation} $

从引理3.1知

$ \begin{equation} D_{2}(\tau , \omega) \subseteq D_{0}(\omega )\cap D_{1}(\omega)\subset E_{1}\subset E. \end{equation} $

可以断言

$ \begin{equation} \Psi(t, \tau-t, \theta_{-t}\omega)D_2(\tau-t, \theta_{-t}\omega) \subseteq D_2(\tau, \omega), \quad \tau\in{{\Bbb R}} , \, \, \omega\in \Omega, \, \, t\geq0. \end{equation} $

事实上,对任意的$ \tau\in{{\Bbb R}} $, $ \omega \in \Omega, $$ t\geq0 $,任取$ v\in D_2(\tau-t, \theta_{-t}\omega) $,那么存在$ \hat{t}\geq\max\{T_{*}(\theta_{-t}\omega), $$ T_{*}(\omega )\} $$ \hat{v}\in D_0(\theta_{-\hat{t}-t}\omega) $,使得$ v = \Psi(\hat{t}, \tau-t-\hat{t}, \theta_{-\hat{t}-t}\omega)\hat{v}, $因此

由于$ r\geq \max\{T_{*}(\theta_{-t}\omega), T_{*}(\omega) \}+t\geq T_{*}(\omega) $,在(3.12)式中取$ s = 0 $可推出(3.14)式成立.

取函数$ \vartheta \in C^{1}({{\Bbb R}} ^{+}, {{\Bbb R}} ) $使得

其中$ \tilde{C} $为常数.注意,下文中出现的$ c_{i} $ ($ i\in {\Bbb N} $)表示独立于$ (R, \omega , \tau , t) $的正常数.

关于解的尾估计有如下结果.

引理3.2  对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega, $$ R>1 $$ t\geq 0 $,设$ \psi (r) = (u_{1}(r), u_{2}(r)) = (u_{1}(r, \tau -t, $$ \theta _{-\tau}\omega, \psi_{\tau-t}(\theta _{-\tau}\omega)), u_{2}(r, \tau-t, \theta_{-\tau }\omega , \psi _{\tau -t}(\theta _{-\tau }\omega))) $$ (r\geq \tau -t) $是系统(3.2)的具有初值$ \psi _{\tau-t}(\theta _{-\tau }\omega )\in D_{2}(\tau -t, \theta _{-t}\omega) $的解,那么

(ⅰ)

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\left( \beta |u_{1}(\tau )|^{2}+\alpha |u_{2}(\tau )|^{2}\right) {\rm d}x {} \\ &&+2\beta \int_{\tau -t}^{\tau }e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}(s)|^{2}{\rm d}x{\rm d}s {} \\ &\leq &e^{\int_{-t}^{0}(2bz(\theta _{s}\omega )-{\rho }){\rm d}s}L_{2}^{2}(\theta _{-t}\omega )+\frac{Q_{1}(\omega )}{R}+\zeta _{1, R}Q_{0}(\omega ), \end{eqnarray} $

其中

(ⅱ)存在正常数$ {c}_{7} $和随机变量$ Q_{2}(\omega )>0 $,使得

$ \begin{equation} \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}(\tau )|^{2}{\rm d}x\leq {c}_{7}e^{\int_{-t}^{0}(2bz(\theta _{l}\omega )-{\rho}){\rm d}l}(1+t)L_{2}^{2}(\theta _{-t}\omega )+\frac{Q_{2}(\omega )}{R}+\zeta_{2, R}Q_{0}(\omega ), \end{equation} $

其中

(ⅲ)对任意$ \varepsilon >0 $,存在$ {T}_{\varepsilon }(\omega )>0 $,使得

  从(3.13)和(3.14)式知,对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega $, $ t\geq 0 $,

$ \begin{equation} \left\{\begin{array}{l} \psi (r)\in D_{2}(r, \theta _{r-\tau }\omega )\subseteq D_{0}(\theta _{r-\tau}\omega )\cap D_{1}(\theta _{r-\tau }\omega )\subset E_{1}, \\ \|\psi (r)\|_{E_{1}}^{2} = \beta \Vert u_{1}(r)\Vert ^{2}+\alpha \Vert u_{2}(r)\Vert ^{2}+\Vert \nabla u_{1}(r)\Vert ^{2}\leq L_{2}^{2}(\theta _{r-\tau }\omega ), \end{array} \right. r\geq \tau -t. \end{equation} $

(ⅰ)取内积$ \big( $$ (3.2)_1 $, $ \beta \vartheta (\frac{|x|^{2}}{R^{2}})u_{1} $$ \big) $$ \big( $$ (3.2)_2 $, $ \alpha \vartheta (\frac{|x|^{2}}{R^{2}})u_{2} $$ \big) $并相加,再由以下估计

可得

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\left( \beta |u_{1}|^{2}+\alpha |u_{2}|^{2}\right) {\rm d}x+({\rho }-2bz(\theta _{r-\tau}\omega))\int_{{{\Bbb R}} ^{3}} \vartheta (\frac{|x|^{2}}{R^{2}})(\beta |u_{1}|^{2}+\alpha |u_{2}|^{2}){\rm d}x{} \\ &\leq &-2\beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x+\frac{2\sqrt{2\beta }\tilde{C}}{R}L_{2}^{2}(\theta _{r-\tau }\omega ) {} \\ &&+e^{-2bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\left( 2\beta \beta _{1}(x)+\frac{\beta }{\lambda}g_{1}^{2}(x, r)+\frac{2\alpha }{3\sigma }g_{2}^{2}(x, r)\right){\rm d}x. \end{eqnarray} $

对(3.18)式在$ [\tau -t, \tau ] $上应用Gronwall不等有

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\left( \beta |u_{1}(\tau , \tau -t, \theta _{-\tau }\omega , \psi _{\tau -t}(\theta _{-\tau}\omega ))|^{2}+\alpha |u_{2}(\tau , \tau -t, \theta _{-\tau }\omega , \psi _{\tau -t}(\theta _{-\tau }\omega ))|^{2}\right){\rm d}x{} \\ &\leq &e^{\int_{-t}^{0}(2bz(\theta _{s}\omega )-{\rho }){\rm d}s}\Vert \psi _{\tau-t}(\theta _{-\tau }\omega )\Vert _{E}^{2}{} \\ && -2\beta \int_{\tau -t}^{\, \tau }e^{\int_{s}^{\tau }(2bz(\theta_{l-\tau }\omega )-{\rho }){\rm d}l}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{ R^{2}})|\nabla u_{1}(s, \tau -t, \theta _{-\tau }\omega , \psi _{\tau-t}(\theta _{-\tau }\omega ))|^{2}{\rm d}x{\rm d}s{} \\ &&+\frac{2\sqrt{2\beta }\tilde{C}}{R}\int_{\tau -t}^{\tau}e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-{\rho}){\rm d}l}L_{2}^{2}(\theta _{s-\tau }\omega ){\rm d}s+\, \int_{\tau -t}^{\tau}e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l-2bz(\theta _{s-\tau }\omega)}{} \\ & &\times \left( 2\beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{ |x|^{2}}{R^{2}})\beta _{1}(x){\rm d}x+\frac{\beta }{\lambda }\mathop{\sup} \limits_{s\in {{\Bbb R}} }\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})g_{1}^{2}{\rm d}x+\frac{2\alpha }{3\sigma }\mathop{\sup}\limits_{s\in {{\Bbb R}} }\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})g_{2}^{2}{\rm d}x\right){\rm d}s{} \\ &\leq &e^{\int_{-t}^{0}(2bz(\theta _{s}\omega )-{\rho }){\rm d}s}L_{2}^{2}(\theta_{-t}\omega ) -2\beta \int_{\tau -t}^{\, \tau }e^{\int_{s}^{\tau }(2bz(\theta_{l-\tau }\omega )-{\rho }){\rm d}l}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}(s)|^{2}{\rm d}x{\rm d}s {} \\ &&+\frac{2\sqrt{2\beta }\tilde{C}}{R}\int_{\tau -t}^{\tau}e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-{\rho}){\rm d}l}L_{2}^{2}(\theta _{s-\tau }\omega ){\rm d}s+\, \int_{\tau -t}^{\tau}e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-\frac{{\rho }}{2} ){\rm d}l-2bz(\theta _{s-\tau }\omega )}{} \\ &&\times \left( 2\beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{ |x|^{2}}{R^{2}})\beta _{1}(x){\rm d}x+\frac{\beta }{\lambda }\mathop{\sup}\limits_{s\in{{\Bbb R}} }\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})g_{1}^{2}{\rm d}x+\frac{2\alpha }{3\sigma }\mathop{\sup}\limits_{s\in {{\Bbb R}} }\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})g_{2}^{2}{\rm d}x\right){\rm d}s{} \\ &\leq & e^{\int_{-t}^{0}(2bz(\theta _{s}\omega )-{ \rho }){\rm d}s}L_{2}^{2}(\theta _{-t}\omega )-\, 2\beta \int_{\tau -t}^{\, \tau }e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-{\rho}){\rm d}l}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}(s)|^{2}{\rm d}x{\rm d}s {} \\ && +\frac{Q_{1}(\omega )}{R}+\zeta _{1, R}Q_{0}(\omega). \end{eqnarray} $

(ⅱ)取内积$ \big( $$ (3.2)_1 $, $ -\vartheta (\frac{|x|^{2}}{R^{2}})\Delta u_{1} $$ \big) $

$ \begin{eqnarray} &&-\int_{{{\Bbb R}} ^{3}}\frac{{\rm d}u_{1}}{{\rm d}t} \vartheta (\frac{|x|^{2}}{R^{2}})\Delta u_{1}{\rm d}x+\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\Delta u_{1}|^{2}{\rm d}x {} \\ &&-(\lambda -bz(\theta _{r-\tau }\omega ))\int_{{{\Bbb R}} ^{3}}\vartheta(\frac{|x|^{2}}{R^{2}})u_{1}\Delta u_{1}{\rm d}x-\alpha \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})u_{2}\Delta u_{1}{\rm d}x {} \\ & = &-e^{-bz(\theta _{r-\tau }\omega )}\left( \int_{{{\Bbb R}} ^{3}}\vartheta( \frac{|x|^{2}}{R^{2}})f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1})\Delta u_{1}{\rm d}x+\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\Delta u_{1}g_{1}{\rm d}x\right) . \end{eqnarray} $

$ \bar{\beta} = \min \{1, \sqrt{\beta }\}>0 $.根据(3.1)和(3.17)式,可得

$ \begin{eqnarray} \|u_{1}(r, \tau -t, \theta _{-\tau }\omega , \psi _{\tau -t}(\theta _{-\tau}\omega ))\|_{L^{6}({{\Bbb R}} ^{3})} &\leq& C_{0}\left( \Vert \nabla u_{1}(r)\Vert ^{2}+\Vert u_{1}(r)\Vert ^{2}\right) ^{\frac{1}{2}}{}\\ &\leq& C_{0} \bar{\beta}^{-1}L_{2}(\theta _{r-\tau }\omega ). \end{eqnarray} $

考虑(1.2)和(3.21)式,有

$ \begin{eqnarray} &&\|e^{-bz(\theta _{r-\tau }\omega )}f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}(r))\|^{2} {} \\ &\leq &e^{-2bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\left( c_{1}|e^{bz(\theta _{r-\tau }\omega )}u_{1}(r)|^{3}+\beta _{2}(x)\right)^{2}{\rm d}x{} \\ &\leq &2c_{1}^{2}C_{0}^{6}\bar{\beta}^{-6}e^{4bz(\theta _{r-\tau }\omega)}L_{2}^{6}(\theta _{r-\tau }\omega )+2\|\beta _{2}\|^{2}e^{-2bz(\theta_{r-\tau }\omega )}. \end{eqnarray} $

$ (3.2)_1 $式知

因此

$ \begin{eqnarray} &&-\int_{{{\Bbb R}} ^{3}}\frac{{\rm d}u_{1}(t)}{{\rm d}t}\vartheta (\frac{|x|^{2}}{R^{2}})\Delta u_{1}{\rm d}x = \int_{{{\Bbb R}} ^{3}}\nabla u_1\cdot\left( \frac{2x}{R^2}\vartheta'(\frac{|x|^{2}}{R^{2}})\frac{{\rm d}u_1}{{\rm d}t} +\vartheta(\frac{|x|^{2}}{R^{2}})\nabla(\frac{{\rm d}u_1}{{\rm d}t}) \right){\rm d}x{} \\&\geq& -\frac{\sqrt{2}\tilde{C}}{R}\left(\|\nabla u_1\|^2 +\|\frac{{\rm d}u_1}{{\rm d}t}\|^2\right)+\frac{1}{2}\frac{\rm d}{{\rm d}t} \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x{} \\&\geq&\frac{1}{2}\frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x-\frac{{c}_{10}}{R}\|\Delta u_{1}\|^{2}-\frac{{c}_{12}}{R}e^{-2bz(\theta _{r-\tau }\omega)}{} \\&&-\frac{{c}_{11}}{R}\left( L_{2}^{2}(\theta_{r-\tau }\omega )+z^{2}(\theta _{r-\tau }\omega )L_{2}^{2}(\theta _{r-\tau }\omega )+e^{4bz(\theta _{r-\tau}\omega )}L_{2}^{6}(\theta _{r-\tau }\omega )\right). \end{eqnarray} $

类似(3.19)式,对(3.18)式在$ [\tau -t, r] $上应用Gronwall不等式得到

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\alpha |u_{2}(r, \tau -t, \theta _{-\tau }\omega , \psi _{\tau -t}(\theta _{-\tau }\omega ))|^{2}{\rm d}x {} \\ &\leq &\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})(\beta |u_{1}(r)|^{2}+\alpha |u_{2}(r, \tau -t, \theta _{-\tau }\omega , \psi _{\tau -t}(\theta _{-\tau }\omega ))|^{2}){\rm d}x {} \\ &\leq &e^{\int_{\tau -t}^{r}(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l}L_{2}^{2}(\theta _{-t}\omega )+\frac{2\sqrt{2\beta }\tilde{C}}{R}\int_{\tau -t}^{\, r}e^{\int_{s}^{r}(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l}L_{2}^{2}(\theta _{s-\tau }\omega ){\rm d}s{} \\ &&+\int_{\tau -t}^{\, r}e^{\int_{s}^{r}(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l-2bz(\theta _{s-\tau }\omega )}\zeta _{1, R}{\rm d}s. \end{eqnarray} $

因为$ 2ab\leq a^2+b^2 $,从而

$ \begin{equation} \alpha \int_{{{\Bbb R}} ^{3}}u_{2}\vartheta (\frac{|x|^{2}}{R^{2}})\Delta u_{1}{\rm d}x\leq \frac{\alpha ^{2}}{2}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})u_{2}^{2}{\rm d}x+\frac{1}{2}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\Delta u_{1}|^{2}{\rm d}x. \end{equation} $

注意到

$ \begin{eqnarray} &&(\lambda - bz(\theta _{r-\tau }\omega ))\int_{{{\Bbb R}} ^{3}}\vartheta ( \frac{|x|^{2}}{R^{2}})u_{1}\Delta u_{1}{\rm d}x {} \\ &\leq &(bz(\theta _{r - \tau }\omega ) - \lambda )\int_{{{\Bbb R}} ^{3}} \vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x + (b|z(\theta _{r - \tau }\omega )| + \lambda )\frac{\sqrt{2}\tilde{C}(1 + \beta ^{-1})}{R}L_{2}^{2}(\theta _{r - \tau }\omega ), {\qquad} \end{eqnarray} $

$ \begin{eqnarray} &&-e^{-bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1})\vartheta (\frac{|x|^{2}}{R^{2}})\Delta u_{1}{\rm d}x {} \\ & = &e^{-bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\nabla u_{1}\cdot \frac{\partial f}{\partial x}(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}){\rm d}x {} \\ &&+\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\frac{\partial f}{\partial u}(x, e^{bz(\theta _{r-\tau }\omega )}u_{1})|\nabla u_{1}|^{2}{\rm d}x {} \\ &&+e^{-bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\nabla u_{1}\cdot f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1})\vartheta ^{\prime }(\frac{|x|^{2}}{R^{2}})\frac{2x}{R^{2}}{\rm d}x {} \\ &\leq &\frac{1}{2}\, e^{-2bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\beta _{3}(x)|^{2}{\rm d}x+\frac{1}{2}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x {} \\ &&+c_{2}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x+\frac{\sqrt{2}\tilde{C}}{R}\left( \Vert \nabla u_{1}\Vert ^{2}+\Vert e^{-bz(\theta _{r-\tau }\omega )}f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1})\Vert ^{2}\right) {} \\ &\leq &\frac{1}{2}\, e^{-2bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\beta _{3}^{2}(x){\rm d}x+{c}_{13}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x {} \\ &&+\frac{{c}_{14}}{R}\left( L_{2}^{2}(\theta _{r-\tau }\omega )+e^{4bz(\theta _{r-\tau }\omega )}L_{2}^{6}(\theta _{r-\tau }\omega )+e^{-2bz(\theta _{r-\tau }\omega )}\right) , \end{eqnarray} $

$ \begin{eqnarray} &&-e^{-bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})g_{1}(x, r)\Delta u_{1}{\rm d}x {} \\ &\leq &\frac{1}{2}e^{-2bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})g_{1}^{2}(x, r){\rm d}x+\frac{1}{2}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\Delta u_{1}|^{2}{\rm d}x. \end{eqnarray} $

考虑(3.23)–(3.28)式,再由(3.20)式可以推出

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x {}\\ &\leq &2(bz(\theta _{r-\tau }\omega )-\lambda )\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x+\frac{{c}_{15}}{R}\|\Delta u_{1}\|^{2} {} \\ && +\frac{{c}_{16}}{R}\left( L_{2}^{2}(\theta _{r-\tau }\omega )+z^{2}(\theta _{r-\tau }\omega )L_{2}^{2}(\theta _{r-\tau }\omega )+e^{4bz(\theta _{r-\tau }\omega )}L_{2}^{6}(\theta _{r-\tau }\omega )\right) {} \\ && +\left( \zeta _{3, R}+\frac{{c}_{17}}{R}\right) e^{-2bz(\theta _{r-\tau }\omega )}+\alpha e^{\int_{\tau -t}^{r}(2bz(\theta _{s-\tau }\omega )-{\rho }){\rm d}s}L_{2}^{2}(\theta _{-t}\omega ) {} \\ && +\frac{{c}_{18}}{R}\int_{\tau -t}^{r}e^{\int_{s}^{r}(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l}L_{2}^{2}(\theta _{s-\tau }\omega ){\rm d}s+{c}_{19}\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|\nabla u_{1}|^{2}{\rm d}x {} \\ && +\alpha \zeta _{1, R}\int_{\tau -t}^{r}e^{\int_{s}^{r}(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l-2bz(\theta _{s-\tau }\omega )}{\rm d}s. \end{eqnarray} $

对(3.11)式在$ [\tau -t, \tau ] $上应用Gronwall不等式有

$ \begin{eqnarray} &&\|\nabla u_{1}(\tau , \tau -t, \theta _{-\tau }\omega , \psi _{\tau -t}(\theta _{-\tau }\omega ))\|^{2}+\int_{\tau -t}^{\tau }e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-\lambda ){\rm d}l}\|\Delta u_{1}(s)\|^{2}{\rm d}s {} \\ & \leq &e^{\int_{-t}^{0}(2bz(\theta _{l}\omega )-\lambda ){\rm d}l}L_{2}^{2}(\theta _{-t}\omega ) + (1 + 2c_{2} + 2\alpha )\int_{-\infty }^{0} e^{\int_{s}^{0}(2bz(\theta _{l}\omega ) - \lambda ){\rm d}l}L_{2}^{2}(\theta _{s}\omega ){\rm d}s + {c}_{5}Q_{0}(\omega ).{}\\ \end{eqnarray} $

注意到

$ \begin{eqnarray} &&\int_{\tau -t}^{\tau }e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-2\lambda ){\rm d}l+\int_{\tau -t}^{s}(2bz(\theta _{r-\tau }\omega )-{\rho }){\rm d}r}L_{2}^{2}(\theta _{-t}\omega ){\rm d}s {} \\ &\leq &\int_{\tau -t}^{\tau }e^{\int_{\tau -t}^{\tau }(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l}L_{2}^{2}(\theta _{-t}\omega ){\rm d}s = e^{\int_{-t}^{0}(2bz(\theta _{l}\omega )-{\rho }){\rm d}l}tL_{2}^{2}(\theta _{-t}\omega ), \end{eqnarray} $

$ \begin{eqnarray} &&\int_{\tau -t}^{\tau }e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-2\lambda ){\rm d}l}\int_{\tau -t}^{s}e^{\int_{r}^{s}(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l}L_{2}^{2}(\theta _{r-\tau }\omega ){\rm d}r{\rm d}s {} \\ &\leq &\frac{2}{{\rho }}\int_{-t}^{0}e^{\int_{r}^{0}(2bz(\theta _{l}\omega )-\frac{{\rho }}{2}){\rm d}l}L_{2}^{2}(\theta _{r}\omega ){\rm d}r<\infty , \end{eqnarray} $

$ \begin{eqnarray} &&\int_{\tau -t}^{\tau }e^{\int_{s}^{\tau }(2bz(\theta _{l-\tau }\omega )-2\lambda ){\rm d}l}\int_{\tau -t}^{s}e^{\int_{r}^{s}(2bz(\theta _{l-\tau }\omega )-{\rho }){\rm d}l-2bz(\theta _{r-\tau }\omega )}{\rm d}r{\rm d}s {} \\ &\leq &\frac{2}{{\rho }}\int_{-t}^{0}e^{\int_{s}^{0}(2bz(\theta _{l}\omega )-\frac{{\rho }}{2}){\rm d}l-2bz(\theta _{s}\omega )}{\rm d}s<\infty . \end{eqnarray} $

对(3.29)式在$ [\tau -t, \tau ] $上应用Gronwall不等式并由(3.15)式, (3.30)–(3.33)式,可得

其中

$ \begin{equation} Q_{2}(\omega ) = {c}_{23}\left( Q_{0}(\omega )+Q_{1}(\omega)+Q_{3}(\omega )\right), \end{equation} $

那么(3.16)式成立.

(ⅲ)由于$ \lim\limits_{t\rightarrow\infty}(1+{c}_{7})e^{\int_{-t}^{0}(2bz(\theta _{l}\omega )-{\rho } ){\rm d}l}(1+t)L_{2}^{2}(\theta _{-t}\omega ) = 0 $,取

由(ⅰ)和(ⅱ)可知(ⅲ)成立.引理3.2证毕.

接下来考虑随机指数吸引子的存在性.

对任意$ \omega \in \Omega $, $ s\geq0 $, $ \varepsilon>0 $,令

$ \{{\chi }(\tau , \omega )\}_{\tau \in {{\Bbb R}} , \, \omega \in \Omega } $$ E = L^{2}({{\Bbb R}} ^{3})\times L^{2}({{\Bbb R}} ^{3}) $的缓增随机闭子集族,具有以下性质:

(A)对任意$ \tau \in {{\Bbb R}} , $$ \omega \in \Omega , $$ {\chi} (\tau , \omega )\subseteq D_{0}(\omega )\cap D_{1}(\omega )\subset E^{1} \subset E, $$ {\chi} (\tau , \omega ) $$ E $中的直径小于等于$ 2L_{0}(\omega) $,且$ L_{0}(\theta _{t}\omega ) $关于$ t\in{{\Bbb R}} $连续;

(B) $ {\chi }(\tau , \omega ) $是正不变的,即$ \Psi (t, \tau -t, \theta _{-t}\omega ){\chi }(\tau -t, \theta_{-t}\omega )\subseteq{\chi }(\tau , \omega ) $, $ \forall\omega\in\Omega $, $ t\geq0 $.证明类似(3.14)式;

(C)对任意$ \tau \in {{\Bbb R}} , $$ \omega \in \Omega, $$ R>1 $$ \psi = (u_{1}, u_{2})\in \chi(\tau , \omega ) $,下面的不等式成立

其中$ \zeta _{4, R} = \zeta _{3, R}+(\frac{1}{2\beta }+\frac{2\alpha }{\bar{\rho}}+1)\zeta _{1, R}. $事实上,对任意$ v\in\chi(\tau, \omega) $,存在$ \hat{v}\in D_0(\theta_{-\hat{t}}\omega) $$ \hat{t}\geq\max\{T_{\ast }(\omega), T_{\ast}(\theta_ {-T_{\varepsilon}(\omega)}\omega)\}+T_{\varepsilon}(\omega) $使得

由引理3.2 (ⅲ)知(C)成立.

为证明$ \Psi $存在随机指数吸引子,需验证$ \{{\chi }(\tau , \omega )\}_{\tau \in {{\Bbb R}} , \, \omega \in \Omega } $满足定理2.1的(H2)–(H3).

接下来验证$ \Psi $的Lipschitz性.

对任意的$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega $, $ t\geq 0 $$ \psi_{j, \tau -t}(\theta _{-\tau }\omega ) = (u_{1, \tau -t}^{(j)}(\theta_{-\tau }\omega), u_{2, \tau -t}^{(j)}(\theta _{-\tau }\omega ))\in{\chi }(\tau -t, $$ \theta _{-t}\omega ) $, $ j = 1, $$ 2, $

考虑到$ {\chi }(\tau , \omega ) $的正不变性和性质(A),可以推出

$ \begin{equation} \left\{ \begin{array}{l} \psi _{j}(r) = (u_{1}^{(j)}(r), \, u_{2}^{(j)}(r))\in {\chi }(r, \theta _{r-\tau }\omega )\subseteq D_{1}(\theta _{r-\tau }\omega )\subset E_{1}, \\ \|\psi_{j}(r)\|_{E_{1}}^{2} = \|\nabla u_{1}^{(j)}(r)\|^{2}+\beta \|u_{1}^{(j)}(r)\|^{2}+\alpha\|u_{2}^{(j)}(r)\|^{2}\leq L_{2}^{2}(\theta_{r-\tau }\omega ), \end{array} \right. \ \forall r\geq \tau -t, j = 1, 2. \end{equation} $

基于(3.2)式,有

$ \begin{equation} \left\{ \begin{array}{l} { } \frac{{\rm d}y_{1}}{{\rm d}t} = \Delta y_1 - \lambda y_1+bz(\theta _{r-\tau }\omega )y_1 - \alpha y_2\\ {\qquad}{\quad}+e^{-bz(\theta _{r-\tau }\omega )}[f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(1)}) - f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(2)})], \\ { } \frac{{\rm d}y_{2}}{{\rm d}t} = -\sigma y_2 + bz(\theta _{r-\tau }\omega )y_2 + \beta y_1, \quad r\geq \tau -t, \tau \in {{\Bbb R}} , \\ y_j(\tau - t, \tau - t, \theta _{-\tau }\omega , y_{j, \tau -t}(\theta _{-\tau }\omega )) = u^{(1)}_{j, \tau - t}(\theta _{-\tau }\omega ) - u^{(2)}_{j, \tau - t}(\theta _{-\tau }\omega ), \ j = 1, 2. \end{array} \right. \end{equation} $

下面的引理说明$ \Psi $$ {\chi }(\tau , \omega ) $上具有Lipschitz性.

引理3.3  对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega, $$ t\geq 0 $$ \psi_{j, \tau -t}(\theta _{-\tau }\omega)\in {\chi}(\tau -t, \theta _{-t}\omega ) $, $ j = 1, 2, $有下面的不等式成立

$ \begin{eqnarray} &&\|\psi _{1}(r, \tau -t, \theta _{-\tau }\omega , \psi _{1, \tau -t}(\theta _{-\tau }\omega ))-\psi _{2}(r, \tau -t, \theta _{-\tau }\omega , \psi _{2, \tau -t}(\theta _{-\tau }\omega ))\|_{E}^{2} {} \\ && +2\beta \int_{\tau -t}^{\, r}e^{\int_{s}^{r}2(bz(\theta _{l-\tau }\omega )+c_{2}){\rm d}l}\|\nabla y_{1}(s)\|^{2}{\rm d}s {} \\ &\leq &e^{\int_{\tau -t}^{r}2(bz(\theta _{l-\tau }\omega )+c_{2}){\rm d}l}\, \| \psi _{1, \tau -t}(\theta _{-\tau }\omega )-\psi _{2, \tau -t}(\theta _{-\tau }\omega )\|_{E}^{2}, \quad \forall r\geq \tau -t. \end{eqnarray} $

特别地,有

$ \begin{eqnarray} &&\Vert \psi _{1}(\tau , \tau -t, \theta _{-\tau }\omega , \psi _{1, \tau -t}(\theta _{-\tau }\omega ))-\psi _{2}(\tau , \tau -t, \theta _{-\tau }\omega , \psi _{2, \tau -t}(\theta _{-\tau }\omega ))\Vert _{E} {} \\ &\leq &e^{\int_{-t}^{0}(bz(\theta _{l}\omega )+c_{2}){\rm d}l}\, \Vert \psi _{1, \tau -t}(\theta _{-\tau }\omega )-\psi _{2, \tau -t}(\theta _{-\tau }\omega )\Vert _{E}, \quad \forall r\geq \tau -t. \end{eqnarray} $

  取内积$ \big((3.36)_1, $$ \beta y_1(r)\big) $$ \big((3.36)_2, $$ \alpha y_2(r)\big) $并相加,再由

可以得到

对上式应用Gronwall不等式推出(3.37)–(3.38)式成立.引理3.3证毕.

接下来对解进行分解.考虑特征值问题

其中$ {\Bbb U}_{R} = \{x\in {{\Bbb R}} ^{3}:|x|<R\} $表示以原点为球心以$ 0<R<+\infty $为半径的球.由文献[28]知,存在一簇特征函数$ \{\tilde{e}_{m, R}\}_{m\in {\Bbb N}} $和对应的一簇特征值$ \{\mu _{m, R}\}_{m\in {\Bbb N}} $,使得这簇特征函数构成$ L^{2}({\Bbb U}_{2R}) $$ H_{0}^{1}({\Bbb U}_{2R}) $的标准正交基,这簇特征值$ \{\mu _{m, R}\}_{m\in {\Bbb N}} $满足

此外,对于给定的$ R\in (0, +\infty ) $和任意$ m\in {\Bbb N} $,

对于给定的$ m\in {\Bbb N} $, $ L^{2}({\Bbb U}_{2R}) = L_{m}^{2}({\Bbb U}_{2R})+L_{m}^{2}({\Bbb U}_{2R})^{\bot } $,其中

那么$ \tilde{P}_{m, R} $$ m $ -维正交投影,且对于$ v\in L_{m}^{2}({\Bbb U}_{2R})^{\bot} $,有$ \mu _{m+1, R}\|\tilde{Q}_{m, R}v\|^{2}\leq\|\nabla v\|^{2}. $

对给定的$ m\in {\Bbb N}, $

那么$ \{e_{m, R}\}_{m\in {\Bbb N}} $$ L^{2}({{\Bbb R}} ^{3}) $中的一族标准正交函数.令

那么$ \widehat{P}_{m, R} $是从$ L^{2}({{\Bbb R}} ^{3}) $$ L_{m, R}^{2}({{\Bbb R}} ^{3}) $$ m $ -维投影,且

那么$ P_{m, R} $是从$ L^{2}({{\Bbb R}} ^{3})\times L^{2}({{\Bbb R}} ^{3}) $$ L_{m, R}^{2}({{\Bbb R}} ^{3})\times L_{m, R}^{2}({{\Bbb R}} ^{3}) $$ 2m $ -维投影.令

是系统(3.36)的解,其中$ y_{\tau -t}(\theta _{-\tau }\omega ) = \psi_{1, \tau -t}(\theta _{-\tau}\omega )-\psi_{2, \tau -t}(\theta _{-\tau}\omega ) $.

其中

那么系统(3.36)的解$ y(r) = (y_1(r), y_2(r)) $有如下分解

接下来在$ E = L^2({{\Bbb R}} ^3)\times L^2({{\Bbb R}} ^3) $中估计$ y^{(2)}_{m, R}(r) = \big(y^{(2)}_{1, m, R}(r), \, y^{(2)}_{2, m, R}(r)\big) $$ y^{(3)}_{m, R}(r) = \big(y^{(3)}_{1, m, R}(r), \, y^{(3)}_{2, m, R}(r)\big) $.

  引理3.4  对固定的$ R>0 $,取$ m\in {\Bbb N} $充分大使得$ 2\lambda +\mu _{m+1, R}>\frac{\sigma }{2} $,那么对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega, $存在随机变量$ {C}_{1}(\omega )\geq 0 $使得对任意$ \psi _{j, \tau -t}(\theta _{-\tau }\omega )\in {\chi}(\tau -t, \theta_{-t}\omega ) $, $ j = 1, 2 $$ t\geq \frac{4}{\sigma }\ln (1+\frac{2\alpha \beta }{\sigma ^{2}}) $,有

$ \begin{eqnarray} &&\|y_{m, R}^{(2)}(\tau , \tau -t, \theta _{-\tau }\omega , y_{\tau -t}(\theta _{-\tau }\omega ))\Vert _{E} {} \\ &\leq &\left( e^{\int_{-t}^{0}\left( bz(\theta _{s}\omega )-\frac{\sigma }{ 8}\right){\rm d}s} + \sqrt{\frac{\beta +\frac{\alpha \beta ^{2}}{\sigma ^{2}}}{ \sqrt{2\lambda +\mu _{m+1, R}}}}e^{\int_{-t}^{0}{C}_{1}(\theta _{s}\omega ){\rm d}s}\right) \|\psi _{1, \tau -t}(\theta _{-\tau }\omega ) - \psi _{2, \tau -t}(\theta _{-\tau }\omega )\|_{E}. {} \\ \end{eqnarray} $

  取内积$ \big((3.36)_1 $, $ y_{1, m, R}^{(2)}\big) $

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\Vert y_{1, m, R}^{(2)}\Vert ^{2}+2\Vert \nabla y_{1, m, R}^{(2)}\Vert ^{2}+2(\lambda -bz(\theta _{r-\tau }\omega ))\Vert y_{1, m, R}^{(2)}\Vert ^{2}+2\alpha (y_{2}, \, y_{1, m, R}^{(2)}) {} \\ & = &2e^{-bz(\theta _{r-\tau }\omega )}\Big(f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(1)}(r))-f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(2)}(r)), \, y_{1, m, R}^{(2)}\Big). \end{eqnarray} $

根据(3.37)式和

(3.4)式可以变为

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\Vert y_{1, m, R}^{(2)}\Vert ^{2}+\left( 2\lambda +\mu _{m+1, R}-2bz(\theta _{r-\tau }\omega )\right) \Vert y_{1, m, R}^{(2)}\Vert ^{2} {} \\ &\leq &\left( \sqrt{\frac{\alpha }{\beta }}+{c}_{26}e^{2bz(\theta _{r-\tau }\omega )}L_{2}^{4}(\theta _{r-\tau }\omega )+{c}_{26}e^{-2bz(\theta _{r-\tau }\omega )}\right) e^{\int_{\tau -t}^{r}2[bz(\theta _{s-\tau }\omega )+c_{2}]{\rm d}s}\|y_{\tau -t}(\theta _{-\tau }\omega )\|^{2}. {}\\ \end{eqnarray} $

对(3.41)式在$ [\tau -t, \tau ] $上应用Gronwall不等式,有

$ \begin{eqnarray} &&\|y_{1, m, R}^{(2)}(\tau , \tau -t, \theta _{-\tau }\omega , y_{\tau -t}(\theta_{-\tau }\omega ))\|^{2} {} \\ &\leq &e^{\int_{-t}^{0}(2bz(\theta _{s}\omega )-2\lambda -\mu_{m+1, R}){\rm d}s}\|y_{1, m, R}^{(2)}(\tau -t)\|^{2} {} \\ &&+\|y_{\tau -t}(\theta _{-\tau }\omega )\|_{E}^{2}\int_{\tau -t}^{\tau}\left( \sqrt{\frac{\alpha }{\beta }}+{c}_{26}e^{2bz(\theta _{s-\tau }\omega )}L_{2}^{4}(\theta _{s-\tau }\omega)+{c}_{26}e^{-2bz(\theta _{s-\tau}\omega )}\right) {} \\ && \times e^{\int_{\tau -t}^{s}2[bz(\theta _{r-\tau }\omega)+c_{2}]{\rm d}r}e^{\int_{s}^{\tau }(2bz(\theta _{r-\tau }\omega )-2\lambda -\mu_{m+1, R}){\rm d}r}{\rm d}s {} \\ &\leq &e^{\int_{-t}^{0}(2bz(\theta _{s}\omega )-2\lambda -\mu_{m+1, R}){\rm d}s}\|y_{1, m, R}^{(2)}(\tau -t)\|^{2} {} \\ &&+\|y_{\tau -t}(\theta _{-\tau }\omega )\|_{E}^{2}e^{\int_{-t}^{0}2[bz(\theta _{r}\omega )+c_{2}]{\rm d}r} {} \\ && \times \int_{-t}^{0}\left( \sqrt{\frac{\alpha }{\beta }}+{c}_{26}e^{2bz(\theta _{s}\omega )}L_{2}^{4}(\theta _{s}\omega )+{c} _{26}e^{-2bz(\theta _{s}\omega )}\right) e^{(2\lambda +\mu _{m+1, R})s}{\rm d}s. \end{eqnarray} $

$ \sqrt{x}\leq e^{x} $ ($ x\geq 0 $)和Hölder不等式可推出

$ \begin{eqnarray} &&\int_{-t}^{0}\left( \sqrt{\frac{\alpha }{\beta }}+{c}_{26}e^{2bz(\theta _{s}\omega )}L_{2}^{4}(\theta _{s}\omega )+{c}_{26}e^{-2bz(\theta _{s}\omega )}\right) e^{(2\lambda +\mu _{m+1, R})s}{\rm d}s {} \\ &\leq &\frac{1}{\sqrt{2\lambda +\mu _{m+1, R}}}\, e^{\int_{-t}^{0}(\sqrt{\frac{\alpha }{\beta }}+{c}_{26}e^{2bz(\theta _{s}\omega )}L_{2}^{4}(\theta _{s}\omega )+{c}_{26}e^{-2bz(\theta _{s}\omega )})^{2}{\rm d}s}. \end{eqnarray} $

结合(3.42)和(3.43)式,可以得到

其中

取内积$ \big((3.36)_2 $, $ y_{2, m, R}^{(2)}\big) $并由估计

可以得到

$ \begin{equation} \frac{\rm d}{{\rm d}t}\|y_{2, m, R}^{(2)}\|^{2}+[\sigma -2bz(\theta_{r-\tau }\omega)]\Vert y_{2, m, R}^{(2)}\|^{2}\leq \frac{\beta ^{2}}{\sigma}\|y_{1, m, R}^{(2)}\|^{2}. \end{equation} $

对(3.44)式在$ [\tau -t, \tau ] $上应用Gronwall不等式,有

因此,

$ \begin{eqnarray} &&\beta\|y_{1, m, R}^{(2)}(\tau , \tau -t, \theta _{-\tau }\omega , y_{\tau-t}(\theta _{-\tau }\omega ))\Vert ^{2}+\alpha \|y_{2, m, R}^{(2)}(\tau , \tau -t, \theta _{-\tau }\omega , y_{\tau -t}(\theta _{-\tau }\omega ))\Vert ^{2}{} \\ &\leq &e^{\int_{-t}^{0}2bz(\theta _{s}\omega ){\rm d}s-\frac{\sigma }{2}t}\left( (1+\frac{2\alpha \beta }{\sigma ^{2}})\beta \Vert y_{1, m, R}^{(2)}(\tau-t)\Vert ^{2}+\alpha \Vert y_{2, m, R}^{(2)}(\tau -t)\Vert ^{2}\right){} \\ &&+\left( \beta +\frac{\alpha \beta ^{2}}{\sigma ^{2}}\right) \frac{1}{\sqrt{2\lambda +\mu _{m+1, R}}}e^{\int_{-t}^{0}2{C}_{1}(\theta _{s}\omega ){\rm d}s}\|y_{\tau -t}(\theta _{-\tau }\omega )\|_{E}^{2} {} \\ &\leq &(1+\frac{2\alpha \beta }{\sigma ^{2}})e^{-\frac{\sigma }{4} t}e^{\int_{-t}^{0}2bz(\theta _{s}\omega ){\rm d}s-\frac{\sigma }{4}t}\|y_{\tau -t}(\theta _{-\tau }\omega )\|_{E}^{2}{} \\ &&+\left( \beta +\frac{\alpha \beta ^{2}}{\sigma ^{2}}\right) \frac{1}{\sqrt{ 2\lambda +\mu _{m+1, R}}}e^{\int_{-t}^{0}2{C}_{1}(\theta _{s}\omega){\rm d}s}\|y_{\tau -t}(\theta _{-\tau }\omega )\|_{E}^{2} {} \\ &\leq &e^{\int_{-t}^{0}2bz(\theta _{s}\omega ){\rm d}s-\frac{\sigma }{4}t}\|\psi _{1, \tau -t}(\theta _{-\tau }\omega )-\psi _{2, \tau -t}(\theta _{-\tau}\omega )\|_{E}^{2}\qquad \quad (t\geq \frac{4}{\sigma }\ln (1+\frac{2\alpha \beta}{\sigma ^{2}})){} \\ &&+\left( \beta + \frac{\alpha \beta ^{2}}{\sigma ^{2}}\right)\frac{1}{\sqrt{ 2\lambda +\mu _{m+1, R}}}e^{\int_{-t}^{0}2{C}_{1}(\theta _{s}\omega){\rm d}s}\|\psi _{1, \tau -t}(\theta _{-\tau }\omega ) - \psi _{2, \tau -t}(\theta _{-\tau }\omega )\|_{E}^{2}, \end{eqnarray} $

引理3.4证毕.

引理3.5  对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega , $$ t\geq 0, $$ m\in {\Bbb N} $$ R\geq 2, $存在随机变量$ {C}_{2}(\omega )\geq 0 $,使得对任意的$ \psi _{j, \tau -t}(\theta _{-\tau }\omega )\in{\chi}(\tau -t, \theta _{-t}\omega ) $, $ j = 1, $$ 2, $下式成立

$ \begin{eqnarray} &&\|y_{m, R}^{(3)}(\tau , \tau -t, \theta _{-\tau }\omega , y_{\tau -t}(\theta_{-\tau }\omega ))\|_{E} {} \\ &\leq &\left( e^{\int_{-t}^{0}\left( bz(\theta _{r}\omega )-\frac{{\rho }}{4}\right){\rm d}r}+\sqrt{\left( \frac{1}{\sqrt{{\rho }}}+\frac{1}{\sqrt[4]{{\rho }} \sqrt{\beta }}\right) J_{\varepsilon , R}}\, e^{\int_{-t}^{0}{C}_{2}(\theta _{r}\omega ){\rm d}r}\right) {} \\ && \times \Vert \psi _{1, \tau -t}(\theta _{-\tau }\omega )-\psi _{2, \tau -t}(\theta _{-\tau }\omega )\Vert _{E}, \end{eqnarray} $

其中

  取内积$ \Big((3.36)_1 $, $ \beta \vartheta (\frac{|x|^{2}}{R^{2}})y_{1}\Big) $$ \Big((3.36)_2 $, $ \alpha \vartheta (\frac{|x|^{2}}{R^{2}})y_{2}\Big) $并相加,对于$ R\geq2 $

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left( \beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|y_{1}|^{2}{\rm d}x+\alpha \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|y_{2}|^{2}{\rm d}x\right) -2\beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{ |x|^{2}}{R^{2}})\Delta y_{1}y_{1}{\rm d}x {} \\ && +2({\rho}-bz(\theta _{r-\tau }\omega ))\left( \beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|y_{1}|^{2}{\rm d}x+\alpha \int_{ {{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|y_{2}|^{2}{\rm d}x\right) {} \\ & = &2\beta e^{-bz(\theta _{r-\tau }\omega )}\int_{{{\Bbb R}} ^{3}}\vartheta ( \frac{|x|^{2}}{R^{2}})[f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(1)}(r)) - f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(2)}(r))]y_{1}{\rm d}x. \end{eqnarray} $

由(3.1)式和$ \vartheta $的定义可以推出,对任意的$ u\in H^{1}({{\Bbb R}} ^{3}) $

$ \begin{eqnarray} \Vert u\Vert _{L^{6}({{\Bbb R}} ^{3}\backslash {\Bbb U}_{2R})}^{2} & = &\left( {\int_{|x|\geq 2R}}u^{6}{\rm d}x\right) ^{\frac{2}{6}}\leq \left( {\int_{ {{\Bbb R}} ^{3}}}\left( \vartheta (\frac{|x|^{2}}{R^{2}})u\right) ^{6}{\rm d}x\right) ^{\frac{2}{6}} {} \\ &\leq &C_{0}^{2}\left( {\int_{{{\Bbb R}} ^{3}}}\left( \nabla \left( \vartheta (\frac{|x|^{2}}{R^{2}})u\right) \right) ^{2}{\rm d}x+{\int_{{{\Bbb R}} ^{3}}} \vartheta (\frac{|x|^{2}}{R^{2}})u^{2}{\rm d}x\right) {} \\ &\leq &\frac{16C_{0}^{2}\tilde{C}^{2}}{R^{2}}\Vert u\Vert ^{2}+2C_{0}^{2}{ \int_{{{\Bbb R}} ^{3}}}\vartheta (\frac{|x|^{2}}{R^{2}})[\left( \nabla u\right) ^{2}+u^{2}]{\rm d}x. \end{eqnarray} $

应用(3.1), (3.35)和(3.48)式可知,对$ j = 1 $, $ 2 $$ R\geq 2 $

$ \begin{eqnarray} \Vert u_{1}^{(j)}(r)\Vert _{L^{6}({{\Bbb R}} ^{3}\backslash {\Bbb U} _{R})}^{2} &\leq &\frac{64\beta ^{-1}C_{0}^{2}\tilde{C}^{2}}{R^{2}} L_{2}^{2}(\theta _{r-\tau }\omega ) {} \\ &&+2C_{0}^{2}\bar{\beta}^{-2}\left( \varepsilon +\frac{2Q_{1}(\theta _{r-\tau }\omega )+2Q_{2}(\theta _{r-\tau }\omega )}{R}+\zeta _{4, \frac{R}{2} }Q_{0}(\theta _{r-\tau }\omega )\right) {} \\ &\leq &2C_{0}^{2}\bar{\beta}^{-2}\varepsilon +Q_{4}(\theta _{r-\tau }\omega )\left( \frac{1}{R^{2}}+\frac{1}{R}+\zeta _{4, \frac{R}{2}}\right) , \end{eqnarray} $

其中

由(1.2), (3.1), (3.49)式和Hölder不等式,有

$ \begin{eqnarray} &&\int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})[f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(1)}(r))-f(x, e^{bz(\theta _{r-\tau }\omega )}u_{1}^{(2)}(r))]y_{1}{\rm d}x {} \\ &\leq &\left[ 6c_{3}C_{0}e^{2bz(\theta _{r-\tau }\omega )}\left( \Vert u_{1}^{(1)}(r)\Vert_{L^{6}({{\Bbb R}} ^{3}\backslash {\Bbb U} _{R})}^{2}+\Vert u_{1}^{(2)}(r)\Vert _{L^{6}({{\Bbb R}} ^{3}\backslash {\Bbb U}_{R})}^{2}\right) +2C_{0}\beta _{4, R}\right] \Vert y_{1}\Vert _{1}\cdot \Vert y_{1}\Vert {} \\ &\leq &\left[ 12c_{3}C_{0}e^{2bz(\theta _{r-\tau }\omega )}\left( 2C_{0}^{2} \bar{\beta}^{-2}\varepsilon +Q_{4}(\theta _{r-\tau }\omega )(\frac{1}{R^{2}}+ \frac{1}{R}+\zeta _{4, \frac{R}{2}})\right) +2C_{0}\beta _{4, R}\right]{} \\ && \times \left(\|y_{1}\|^{2}+\|y_{1}\|\cdot\|\nabla y_{1}\|\right). \end{eqnarray} $

根据(3.37)式可知

$ \begin{eqnarray} \|y_{1}(r)\|^{2} + \|y_{1}(r)\|\cdot\|\nabla y_{1}(r)\| &\leq &\beta ^{-1}e^{\int_{\tau -t}^{r}2[bz(\theta _{s-\tau }\omega )+c_{2}]{\rm d}s}\Vert y_{\tau -t}(\theta _{-\tau }\omega )\Vert _{E}^{2} {} \\ && +\frac{1}{\sqrt{{\beta}}}e^{\int_{\tau -t}^{r}[bz(\theta _{s-\tau }\omega ) +c_{2}]{\rm d}s}\Vert y_{\tau -t}(\theta _{-\tau }\omega )\Vert _{E} \|\nabla y_{1}(r)\|.{\qquad} \end{eqnarray} $

应用(3.50)式, (3.51)式和$ 2\beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})\Delta y_{1}y_{1}{\rm d}x\leq \frac{4\sqrt{2}\tilde{C}\beta}{R}\|y_{1}\|\cdot\|\nabla y_{1}\| $,可以将(3.47)式变为

$ \begin{eqnarray} &&\frac{\rm d}{{\rm d}t}\left( \beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{ R^{2}})|y_{1}|^{2}{\rm d}x+\alpha \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{ R^{2}})|y_{2}|^{2}{\rm d}x\right) {} \\ &&+2({\rho }-bz(\theta _{r-\tau }\omega ))\left( \beta \int_{{{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|y_{1}|^{2}{\rm d}x+\alpha \int_{ {{\Bbb R}} ^{3}}\vartheta (\frac{|x|^{2}}{R^{2}})|y_{2}|^{2}{\rm d}x\right) {} \\ &\leq &J_{\varepsilon , R}\, \Vert y_{\tau -t}(\theta _{-\tau }\omega )\Vert _{E}^{2}e^{\int_{\tau -t}^{r}2[bz(\theta _{s-\tau }\omega )+c_{2}]{\rm d}s}Q_{5}(\theta _{r-\tau }\omega ) {} \\ && +J_{\varepsilon , R}\Vert y_{\tau -t}(\theta _{-\tau }\omega )\Vert _{E}\, e^{\int_{\tau -t}^{r}[bz(\theta _{l-\tau }\omega )+c_{2}]{\rm d}l}\|\nabla y_{1}(r)\|Q_{5}(\theta _{r-\tau }\omega ), \end{eqnarray} $

其中$ Q_{5}(\omega ) = {c}_{27}e^{b|z(\omega )|}\left( 1+L_{2}^{2}(\omega )+Q_{0}(\omega )+Q_{1}(\omega )+Q_{2}(\omega )\right) $.对(3.52)式在$ [\tau -t, \tau ] $ ($ t\geq 0 $)上应用Gronwall不等式可得

其中

因此, (3.46)式成立.引理3.5证毕.

引理3.6  对固定的$ R\geq 2 $,令$ m\in {\Bbb N} $足够大使得$ 2\lambda+\mu _{m+1, R}>\frac{\sigma }{2} $,那么对任意$ \tau \in {{\Bbb R}} $, $ \omega \in \Omega $,存在随机变量$ {C}_{3}(\omega )\geq 0 $$ 2m $ -维正交投影$ P_{m, R} $: $ L^{2}({{\Bbb R}} ^{3})\times L^{2}({\Bbb R}^{3})\rightarrow L_{m, R}^{2}({{\Bbb R}} ^{3})\times L_{m, R}^{2}({{\Bbb R}} ^{3}) $使得对任意的$ \psi _{j, \tau -t}(\theta _{-\tau }\omega ) $$ \in $$ {\cal {\chi }}(\tau -t, \theta _{-t}\omega ) $, $ j = 1 $, $ 2 $,有

(ⅰ)对任意$ t\geq 0 $,

$ \begin{eqnarray} &&\|\Psi (t, \tau -t, \theta _{-t}\omega )\psi _{1, \tau -t}(\theta _{-\tau }\omega )-\Psi (t, \tau -t, \theta _{-t}\omega )\psi _{2, \tau -t}(\theta _{-\tau }\omega )\|_{E} {} \\ &\leq &e^{\int_{-t}^{0}{C}_{3}(\theta _{s}\omega ){\rm d}s}\Vert \psi _{1, \tau -t}(\theta _{-\tau }\omega )-\psi _{2, \tau -t}(\theta _{-\tau }\omega )\Vert _{E}. \end{eqnarray} $

(ⅱ)对任意$ t\geq \max\{\frac{8\ln2}{ {\rho}}, \frac{4}{\sigma} \ln(1+\frac{2\alpha \beta}{\sigma^2})\} $,

$ \begin{eqnarray} &&\|(I - P_{m, R})\Psi (t, \tau - t, \theta _{-t }\omega )\psi_{1, \tau -t}(\theta _{-\tau}\omega ) - (I - P_{m, R})\Psi (t, \tau - t, \theta _{-t}\omega )\psi_{2, \tau -t}(\theta _{-\tau}\omega )\|_E {} \\ \ &\leq &\|y^{(2)}_{m, R}(\tau , \tau -t, \theta _{-\tau }\omega , y_{\tau -t}(\theta _{-\tau }\omega ))\Vert_E +\|y^{(3)}_{m, R}(\tau , \tau -t, \theta _{-\tau }\omega , y_{\tau -t}(\theta _{-\tau }\omega ))\Vert_{E} {} \\ &\leq &\left( e^{\int_{-t}^{0}\left( b |z(\theta _{s }\omega )|-\frac{ {\rho} }{8 }\right){\rm d}s}+\frac{1}{2} \widehat{\delta} _{\varepsilon , R, m}e^{\int_{-t}^{0} {C}_{3}(\theta _{s}\omega ){\rm d}s}\right) \Vert \psi_{1, \tau -t}(\theta _{-\tau }\omega )-\psi_{2, \tau -t}(\theta _{-\tau }\omega )\Vert_E , \end{eqnarray} $

其中

$ \begin{eqnarray} {C}_{3}(\omega )& = &{c}_{28}+3b |z(\omega )|+ {c}_{29}e^{4b| z(\omega )|}L_{2}^{8}(\omega ) +{\ {c}_{30}}e^{4b |z(\omega )|} {} \\ &&+ {c}_{31}e^{4b| z(\omega )|}\left( Q_{0}^{4}(\omega )+Q_{1}^{4}(\omega )+Q_{2}^{4}(\omega )\right). \end{eqnarray} $

  应用(3.38), (3.39)和(3.46)式,可得

对任意$ t\geq \frac{8\ln 2}{{\rho }} $,有

再次应用(3.38), (3.39)和(3.46)式,可得(ⅰ)和(ⅱ)成立.引理3.6证毕.

接下来验证期望$ {\bf E}[b|z(\omega )|] $, $ {\bf E}[{C}_{3}(\omega )] $$ {\bf E}[{C}_{3}^{2}(\omega )] $的有界性.首先介绍下面的引理.

引理3.7[45]  Ornstein-Uhlenbeck过程$ z(\theta _{t}\omega ) $满足

$ \begin{equation} {\bf E}[|z(\theta _{t}\omega )|^{p}] = \frac{\Gamma (\frac{1+p}{2})}{\sqrt{\pi}}, \quad \forall p>0, \quad t\in {{\Bbb R}} , \end{equation} $

其中$ \Gamma $是Gamma函数.

引理3.8  若系统(1.1)中的参数$ b $满足

$ \begin{equation} b<\min \left\{ \frac{{\rho }\sqrt{\pi }}{64}, \frac{\rho}{6144}, \frac{1}{3072}\right\} , \end{equation} $

那么

  显然,由(3.56)式, (3.57)式和$ \Gamma (1) = 1 $可以推出$ 0\leq {\bf E}[b|z(\omega )|]\leq \frac{{\rho }}{64} $.应用(3.34)和(3.55)式有

$ \begin{equation} C^2_3(\omega)\leq c_{32}(1+|z(\omega)|^2+e^{16b|z(\omega)|} +L_2^{32}(\omega)+Q_0^{16}(\omega)+Q_1^{16}(\omega)+ Q_3^{16}(\omega)). \end{equation} $

根据(3.4)和(3.5)式可得

$ \begin{equation} L_{1}^{32}(\omega) \leq c_{33}\left(1+\left(\int_{-1}^{\, 0}e^{-2bz(\theta_{s}\omega)}{\rm d}s \right)^{16} +\max\limits_{-1\leq s\leq 0}|z(\theta_{s}\omega)|^{32}+ \tilde{Q}_1^{64}(\omega)\right), \end{equation} $

$ \begin{equation} \tilde{Q}_1^{64}(\omega)\leq c_{34}(1+e^{\int_{-1}^{\, 0} {128bz(\theta_{l}\omega)}{\rm d}l}+ {Q}_0^{64}(\omega)). \end{equation} $

由(3.3), (3.6), (3.58), (3.59)和(3.60)式,有

$ \begin{eqnarray} C^2_3(\omega)&\leq & c_{35}\bigg(1+|z(\omega)|^2+e^{16b|z(\omega)|} + Q_6^{16}(\omega)+Q_7^{16}(\omega)+ Q_0^{64}(\omega)+ \left(\int_{-1}^{\, 0}e^{-2bz(\theta_{s}\omega)}{\rm d}s \right)^{16}{} \\ &&\left.+\max\limits_{-1\leq s\leq 0}|z(\theta_{s}\omega)|^{32}+e^{\int_{-1}^{\, 0} {128bz(\theta_{l}\omega)}{\rm d}l} \right), \end{eqnarray} $

其中

$ \begin{equation} b< \min\bigg\{\frac{\rho}{32n}, \frac{1}{16n}\bigg\}, \quad n\in {\Bbb N}. \end{equation} $

注意到$ L_0^{2n}(\omega)\leq(1+c_4)^n2^{n-1}(1+Q_0^n(\omega)). $应用Hölder不等式可得

$ \begin{eqnarray} {\bf E}[{Q}_0^{n}(\omega)]&\leq& {\bf E}\left( \int_{-\infty }^{0}e^{\, \frac{(n-1)\rho}{2n}s} e^{\, \frac{\rho}{2n}s-2bz(\theta_{s}\omega)+ \int_{s}^{0}2bz(\theta_{l}\omega){\rm d}l}{\rm d}s\right)^{n}{} \\ & \leq&(\frac{2}{\rho})^{n-1}{\bf E}\int_{-\infty }^{0}e^{\, \frac{\rho}{2}s} e^{\, 2bn|z(\theta_{s}\omega)|} e^{\int_{s}^{0}2bnz(\theta_{l}\omega){\rm d}l}{\rm d}s{} \\ & \leq&(\frac{2}{\rho})^{n-1}\int_{-\infty }^{0}e^{\, \frac{\rho}{2}s}\Big( {\bf E}\big[e^{\, 4bn|z(\theta_{s}\omega)|}\big]+ {\bf E}\big[e^{\int_{s}^{0}4bnz(\theta_{l}\omega){\rm d}l} \big]\Big){\rm d}s{}\\ &\doteq&\kappa_{0, n}. \end{eqnarray} $

从(3.62)式,引理3.7和

$ \begin{equation} {\bf E}[e^{|\epsilon z(\theta_{s}\omega)|}]\leq \left( 1+\frac{|\epsilon|}{\sqrt{\pi}}\right) e^{|\epsilon|^2}, \, \, \, \, \forall \epsilon, \, s\in {{\Bbb R}} , \qquad( \rm{见文献[28]的(3.68)式)} \end{equation} $

可以推出

在(3.63)式中用$ 4n $替换$ n $,得到

考虑到(3.62)式, (3.64)式和引理3.7,从(3.4)式可知,对$ \forall s\in{{\Bbb R}} $

$ \begin{eqnarray} &&{\bf E}[L_{1}^{2n}(\theta_s\omega)] = {\bf E}[L_{1}^{2n}(\omega)]{} \\ &\leq& c_{36}5^{n-1}{\bf E}\left(1 + \left(\int_{-1}^{\, 0}e^{-2bz(\theta_{s}\omega)}{\rm d}s \right)^{n}+\max\limits_{-1\leq s\leq 0}|z(\theta_{s}\omega)|^{2n}+e^{\int_{-1}^08bn|z(\theta_l\omega)|{\rm d}l}+{Q}_0^{4n}(\omega) \right){} \\ &\leq& c_{36}5^{n-1}\left(1 + \int_{-1}^{\, 0} {\bf E}\big[e^{2bn|z(\theta_{s}\omega)|}\big]{\rm d}s+ {\bf E}\big[|z(\theta_{s}\omega)|^{2n}\big]+ {\bf E}\big[e^{\int_{-1}^08bn|z(\theta_l\omega)|{\rm d}l}\big] +{\bf E}\big[{Q}_0^{4n}(\omega)\big]\right){} \\ &\doteq&\xi_{1, n}<\infty. \end{eqnarray} $

因此

$ \begin{equation} {\bf E}[L_{2}^{2n}(\theta_s\omega)] = {\bf E}[L_{2}^{2n}(\omega)] \leq2^{n-1}(\xi_{0, n}+\xi_{1, n})\doteq\xi_{2, n}<\infty, \quad s\in{{\Bbb R}} . \end{equation} $

由Hölder不等式, (3.57)式, (3.66)式和引理3.7可以得到

$ \begin{eqnarray} {\bf E}[Q_6^{16}(\omega)]& = &{\bf E}\left(\int_{-\infty}^0 e^{\frac{15}{32}\rho s}e^{\int_s^0(2bz(\theta_l\omega)- \frac{\rho}{32}){\rm d}l}L_2^2(\theta_s\omega){\rm d}s\right)^{16}{} \\&\leq& (\frac{2}{\rho})^{15}\int_{-\infty}^0e^{\frac{\rho s}{2}}\Big( {\bf E}[e^{\int_s^064bz(\theta_l\omega){\rm d}l}]+ {\bf E}[L_{2}^{64}(\theta_s\omega)]\Big){\rm d}s\doteq \xi_3<\infty. \end{eqnarray} $

应用Hölder不等式,有

由Hölder不等式, (3.57)式, (3.66)式和引理3.7,可以推出

从而

$ \begin{equation} {\bf E}[Q_{7}^{16}(\omega)]\leq (\frac{2}{\rho})^{15}(\xi_4+\xi_5)\doteq\xi_6<\infty. \end{equation} $

根据引理3.7, (3.57), (3.61), (3.63), (3.64), (3.67)和(3.68)式可以得到

引理3.8证毕.

下面给出本节的主要结果.

定理3.1  假设(A1)–(A2)和(3.57)式成立.那么$ \{\Psi (t, \tau , \omega )\}_{t\geq 0, \tau \in {{\Bbb R}} , \omega \in \Omega } $存在一个随机指数吸引子$ \{{\cal O}(\tau , \omega )\}_{\tau \in {{\Bbb R}} , \omega \in \Omega } $,且有如下性质:对任意$ \tau \in {{\Bbb R}} $$ \omega \in \Omega $,

(ⅰ) $ {\cal O}(\tau , \omega )\, (\subseteq \overline{\chi(\tau, \omega )}) $$ E $的紧集且关于$ \omega $可测;

(ⅱ) $ \Psi(t, \tau , \omega){\cal O}(\tau , \omega )\subseteq {\cal O}(t+\tau , \theta _{t}\omega ) $, $ \forall t\geq 0 $;

(ⅲ)存在正数$ l_{0}\in {\Bbb N} $使得$ \dim _{f}{\cal O}(\tau, \omega)\leq l_{0}<\infty $;

(ⅳ)对任意$ D\in {\cal D}(E), $存在随机变量$ \check{T}_{D}(\tau , \omega )\geq 0 $和缓增随机变量$ \check{b}_{\omega }>0 $使得

  在(3.53)式的右端和(3.54)式中取

从引理3.8可得

由于

取充分小的$ \varepsilon = \varepsilon_{1} $和充分大的$ R = R_{1}\geq 2 $使得

对固定的$ R_{1} $,由$ \mu _{m+1, R_{1}}\rightarrow \infty $$ (m\rightarrow \infty ) $知,存在充分大的$ m = m_{1} $使得

因此

对任意$ D\in {\cal D}(E) $,令

根据以上讨论和性质(A),性质(B),引理3.6,引理3.8可知, $ \{{\chi }(\tau , \omega )\}_{\tau \in {{\Bbb R}} , \omega \in \Omega } $满足定理2.1中的(H1)–(H3).因此,定理3.1成立,且

其中$ [\cdot ] $表示取整数.定理3.1证毕.

注3.1  定理3.1表明$ \Psi $存在随机吸引子$ {\cal \{A(\tau }, {\cal \omega )\}}_{\tau \in {{\Bbb R}} , \omega \in \Omega }\subseteq {\cal \{O(\tau }, {\cal \omega )\}} _{\tau \in {{\Bbb R}} , \omega \in \Omega } $,且其分形维数

因此,系统(1.1)的长期行为可以用有限个独立参数刻画.

参考文献

Temam R . Infinite-Dimensional Dynamical Systems in Mechanics and Physics. New York: Springer-Verlag, 1997

[本文引用: 1]

Robinson J C . Infinite-Dimensional Dynamical Systems:An Introduction to Dissipative Parabolic PDEs and the Theory of Global Attractors. Cambridge: Cambridge University Press, 2001

Sell G R , You Y . Dynamics of Evolutionary Equations. New York: Springer-Verlag, 2002

Marion M .

Finite-dimensional attractors associated with partly dissipative reaction-diffusion systems

SIAM J Math Anal, 1989, 20, 816- 844

DOI:10.1137/0520057     

Chepyzhov V V, Vishik M I. Attractors for Equations of Mathematical Physics. Providence, RI: AMS Colloquium Publications, 2000

Haraux A .

Attractors of asymptotically compact processes and applications to nonlinear partial differential equations

Comm Partial Differential Equations, 1988, 13, 1383- 1414

DOI:10.1080/03605308808820580     

Ruelle D .

Characteristic exponents for a viscous fluid subjected to time dependent forces

Comm Math Phys, 1984, 93, 285- 300

DOI:10.1007/BF01258529     

Caraballo T , Lukaszewicz G , Real J .

Pullback attractors for asymptotically compact non-autonomous dynamical systems

Nonlinear Anal, 2006, 64, 484- 498

DOI:10.1016/j.na.2005.03.111     

Arnold L . Random Dynamical Systems. New York: Springer-Verlag, 2013

[本文引用: 3]

Crauel H , Flandoli F .

Attractors for random dynamical systems

Probab Theory Related Fields, 1994, 100, 365- 393

DOI:10.1007/BF01193705     

Crauel H , Debussche A , Flandoli F .

Random attractors

J Dynam Differential Equations, 1997, 9, 307- 341

DOI:10.1007/BF02219225     

Wang B .

Sufficient and necessary criteria for existence of pullback attractors for non-compact random dynamical systems

J Differential Equations, 2012, 253, 1544- 1583

DOI:10.1016/j.jde.2012.05.015      [本文引用: 2]

Chueshov I . Monotone Random Systems Theory and Applications. New York: Springer, 2004

Bates P W , Lu K , Wang B .

Random attractors for stochastic reaction-diffusion equations on unbounded domains

J Differential Equations, 2009, 246, 845- 869

DOI:10.1016/j.jde.2008.05.017      [本文引用: 1]

Li D , Wang B , Wang X .

Limiting behavior of non-autonomous stochastic reaction-diffusion equations on thin domains

J Differential Equations, 2017, 262, 1575- 1602

DOI:10.1016/j.jde.2016.10.024     

Yin J , Li Y , Gu A .

Regularity of pullback attractors for non-autonomous stochastic coupled reaction-diffusion systems

J Appl Anal Comput, 2017, 7, 884- 898

Wang B .

Existence and upper semicontinuity of attractors for stochastic equations with deterministic non-autonomous terms

Stoch Dyn, 2014, 14, 1791- 1798

URL     [本文引用: 1]

Eden A, Foias C, Nicolaenko B, Temam R. Exponential Attractors for Dissipative Evolution Equations. Chichester: John Wiley & Sons, 1994

[本文引用: 1]

Efendiev M , Miranville A , Zelik S .

Exponential attractors for a nonlinear reaction-diffusion system in R3

C R Acad Sci Paris Ser I Math, 2000, 330, 713- 718

DOI:10.1016/S0764-4442(00)00259-7      [本文引用: 1]

Efendiev M , Zelik S , Miranville A .

Exponential attractors and finite-dimensional reduction for non-autonomous dynamical systems

Proc Roy Soc Edinburgh Sect A, 2005, 135, 703- 730

DOI:10.1017/S030821050000408X     

Czaja R , Efendiev M .

Pullback exponential attractors for nonautonomous equations Part Ⅰ:Semilinear parabolic problems

J Math Anal Appl, 2011, 381, 748- 765

DOI:10.1016/j.jmaa.2011.03.053     

Langa J A , Miranville A , Real J .

Pullback exponential attractors

Discrete Contin Dyn Syst, 2010, 26, 1329- 1357

DOI:10.3934/dcds.2010.26.1329     

Carvalho A N , Sonner S .

Pullback exponential attractors for evolution processes in Banach spaces:Theoretical results

Commun Pure Appl Anal, 2013, 12, 3047- 3071

DOI:10.3934/cpaa.2013.12.3047     

Carvalho A N , Sonner S .

Pullback exponential attractors for evolution processes in Banach spaces:Properties and applications

Commun Pure Appl Anal, 2014, 13, 1141- 1165

DOI:10.3934/cpaa.2014.13.1141      [本文引用: 1]

Shirikyan A , Zelik S .

Exponential attractors for random dynamical systems and applications

Stoch Partial Differ Equ Anal Comput, 2013, 1, 241- 281

URL     [本文引用: 4]

Caraballo T , Sonner S .

Random pullback exponential attractors:General existence results for random dynamical systems in Banach spaces

Discrete Contin Dyn Syst, 2017, 37, 6383- 6403

DOI:10.3934/dcds.2017277      [本文引用: 2]

Zhou S .

Random exponential attractor for cocycle and application to non-autonomous stochastic lattice systems with multiplicative white noise

J Differential Equations, 2017, 263, 2247- 2279

DOI:10.1016/j.jde.2017.03.044      [本文引用: 2]

Zhou S .

Random exponential attractor for stochastic reaction-diffusion equation with multiplicative noise in R3

J Differential Equations, 2017, 263, 6347- 6383

DOI:10.1016/j.jde.2017.07.013      [本文引用: 1]

Wang Z , Zhou S .

Random attractor and random exponential attractor for stochastic non-autonomous damped cubic wave equation with linear multiplicative white noise

Discrete Contin Dyn Syst, 2018, 38, 4767- 4817

DOI:10.3934/dcds.2018210      [本文引用: 8]

FitzHugh R .

Impulses and physiological states in theoretical models of nerve membrane

Biophys J, 1961, 1, 445- 466

DOI:10.1016/S0006-3495(61)86902-6      [本文引用: 1]

Nagumo J , Arimoto S , Yoshizawa S .

An active pulse transmission line simulating nerve axon

Proceedings of the IRE, 1962, 50, 2061- 2070

DOI:10.1109/JRPROC.1962.288235      [本文引用: 1]

Vleck E V , Wang B .

Attractors for lattice FitzHugh-Nagumo systems

Phys D, 2005, 212, 317- 336

DOI:10.1016/j.physd.2005.10.006      [本文引用: 1]

Wang B .

Dynamical behavior of the almost-periodic discrete FitzHugh-Nagumo systems

Internat J Bifur Chaos Appl Sci Engrg, 2007, 17, 1673- 1685

DOI:10.1142/S0218127407017987     

Adili A , Wang B .

Random attractors for non-autonomous stochastic FitzHugh-Nagumo systems with multiplicative noise

Discrete Contin Dyn Syst SI, 2013, Supp, 1- 10

DOI:10.3934/proc.2013.2013.1      [本文引用: 1]

Adili A , Wang B .

Random attractors for stochastic FitzHugh-Nagumo systems driven by deterministic non-autonomous forcing

Discrete Contin Dyn Syst Ser B, 2013, 3, 643- 666

DOI:10.1016/j.jde.2012.05.015      [本文引用: 1]

Du X , Guo B .

The long time behavior for partly dissipative stochastic systems

J Appl Anal Comput, 2011, 1, 449- 465

URL    

Gu A , Li Y .

Singleton sets random attractor for stochastic FitzHugh-Nagumo lattice equations driven by fractional Brownian motions

Commun Nonlinear Sci Numer Simul, 2014, 19, 3929- 3937

DOI:10.1016/j.cnsns.2014.04.005     

Tang B .

Regularity of pullback random attractors for stochasitic FitzHugh-Nagumo system on unbounded domains

Discrete Contin Dyn Syst, 2014, 35, 441- 466

DOI:10.1016/j.jde.2005.06.008      [本文引用: 1]

Huang J .

The random attractor of stochastic FitzHugh-Nagumo equations in an infinite lattice with white noises

Phys D, 2007, 233, 83- 94

DOI:10.1016/j.physd.2007.06.008     

Huang J , Shen W .

Global attractors for partly dissipative random/stochastic reaction diffusion systems

Int J Evol Equ, 2010, 4, 383- 411

URL    

Wang Y , Liu Y , Wang Z .

Random attractors for partly dissipative stochastic lattice dynamical systems

J Difference Equ Appl, 2008, 14, 799- 817

DOI:10.1080/10236190701859542     

Zhou S , Wang Z .

Finite fractal dimensions of random attractors for stochastic FitzHugh-Nagumo system with multiplicative white noise

J Math Anal Appl, 2016, 441, 648- 667

DOI:10.1016/j.jmaa.2016.04.038      [本文引用: 2]

Adams R A , Fournier J F . Sobolev Spaces. Second Edition. New York: Academic Press, 2009

[本文引用: 1]

Caraballo T , Kloeden P E , Schmalfuß B .

Exponentially stable stationary solutions for stochastic evolution equations and their perturbation

Appl Math Optim, 2004, 50, 183- 207

DOI:10.1007/s00245-004-0802-1      [本文引用: 1]

Fan X .

Attractors for a damped stochastic wave equation of Sine-Gordon type with sublinear multiplicative noise

Stoch Anal Appl, 2006, 24, 767- 793

DOI:10.1080/07362990600751860      [本文引用: 1]

/