数学物理学报, 2025, 45(2): 493-511

带有斜边值条件的 Hessian 商方程解的梯度估计

陈娜,, 王培合,*

曲阜师范大学数学科学学院 山东曲阜 273165

Gradient Estimate of Solutions to Hessian Quotient Equations with Oblique Boundary Value

Chen Na,, Wang Peihe,*

School of Mathematical Sciences, Qufu Normal University, Shandong Qufu 273165

通讯作者: * 王培合,E-mail: peihewang@hotmail.com

收稿日期: 2023-08-30   修回日期: 2024-09-3  

基金资助: 山东省自然科学基金(ZR2020MA018)

Received: 2023-08-30   Revised: 2024-09-3  

Fund supported: Natural Science Foundation of Shandong Province of China(ZR2020MA018)

作者简介 About authors

陈娜,E-mail:nachen93@163.com

摘要

该文研究了具有预定夹角边值条件或斜导数边值条件的 Hessian 商方程. 最后得到了 $k$-允许解的整体梯度估计.

关键词: Hessian 商方程; 预定夹角边值; 斜导数边值; 梯度估计

Abstract

In this paper, the Hessian quotient equations with prescribed contact angle boundary value or oblique derivative boundary value problem are studied. Finally a priori global gradient estimate for the $k$-admissible solutions is derived.

Keywords: Hessian quotient equation; prescribed contact angle boundary value; oblique derivative boundary value; gradient estimate

PDF (659KB) 元数据 多维度评价 相关文章 导出 EndNote| Ris| Bibtex  收藏本文

本文引用格式

陈娜, 王培合. 带有斜边值条件的 Hessian 商方程解的梯度估计[J]. 数学物理学报, 2025, 45(2): 493-511

Chen Na, Wang Peihe. Gradient Estimate of Solutions to Hessian Quotient Equations with Oblique Boundary Value[J]. Acta Mathematica Scientia, 2025, 45(2): 493-511

1 引言

梯度估计是偏微分方程研究领域中的一个重要问题, 它与许多有趣的问题有关, 例如偏微分方程解的 Liouville 性质、各种边值问题解的存在性、解的水平集的正则性等. 本文分别给出了具有两类边界条件的 Hessian 商方程的 $k$-允许解的梯度估计. 考虑如下边值问题.

$\left\{\begin{array}{ll} \frac{\sigma_{k}\left(D^{2} u\right)}{\sigma_{l}\left(D^{2} u\right)}=f(x, u) & \text { 在 } \Omega \text { 内, }, \\ G(x, u, D u)=0 & \text { 在 } \partial \Omega \text { 上, } \end{array}\right.$

其中 $0\leq l<k\leq n$ 是整数, $\sigma_k$ 表示 $k$-阶初等对称多项式, $\Omega$ 是 $\mathbb{R}^n$ 中的有界光滑区域, $f(x,\,t)$ 是定义在 $\Omega\times \mathrm{R}$ 上的光滑函数. $G(x,\, u,\,Du)=0$ 包含两类重要的边值: 预定夹角边值和斜导数边值, 后面将给出它们的具体形式. 如果问题 (1.1) 的解 $u$ 的 Hessian 矩阵的特征值 $\lambda(D^{2}u)$ 属于 Gårding 锥 $\Gamma_{k}$,

$\begin{align*} \Gamma_{k}=\{\lambda\in\mathrm{R}^{n}: \sigma_{i}(\lambda)>0,\,\,\,\forall1\leq i\leq k\}, \end{align*}$

则称 $u$ 为问题 (1.1) 的 $k$-允许解, 此时问题 (1.1) 中的 Hessian 商方程是椭圆的 (见文献 [4]). 记 $F^{ij}=\frac{\partial \left(\frac{\sigma_{k}(D^{2}u)}{\sigma_{l}(D^{2}u)}\right)}{\partial u_{ij}}$, 则对 $\forall x\in\Omega$, 矩阵 $(F^{ij})$ 关于 $D^{2}u(x)$ 是正定的.

Hessian 商方程是 Hessian 方程的自然推广, Hessian 方程对应于问题 (1.1) 中 $l=0$ 的特殊情形. 它们是典型的完全非线性椭圆方程, 与许多几何问题都息息相关. 对于具有 Dirichlet 边界条件或 Neumann 边界条件的 Hessian 商方程, 存在性问题已经解决, 可以参考文献 [3],[4],[12],[13],[14],[19].

现在, 自然想到考虑问题 (1.1) 解的存在性, 其中 $G(x,u,Du)=\frac{\partial u}{\partial\nu}+\cos\theta\sqrt{1+|Du|^{2}}$ 或者 $G(x,u,Du)=\frac{\partial u}{\partial\beta}-\varphi(x,u)$, $\theta(x)$ 是 $\overline{\Omega}$ 上的光滑函数, $\varphi$ 是 $\overline{\Omega}\times\mathrm{R}$ 上的光滑函数, $\nu$ 是单位法向量场, $\beta$ 是沿 $\partial\Omega$ 的光滑单位向量场. 通常, 我们需要推出 $C^{2,\alpha}$ 先验估计进而得出解的存在性. 然而与 Dirichlet 和 Neumann 边界条件相比, 这类边值条件更加复杂. 这里, 我们得到了 (1.1) 的解的先验梯度估计, 为解的存在性做一点准备.

对于具有预定夹角边界条件的 $k$-曲率方程, 邓和麻在文献 [5] 中得出了整体梯度估计. 对于具有预定夹角或者斜导数边界条件的 $k$-Hessian 方程, 本文第二作者在文献 [18] 中推得 $k$-允许解的整体梯度估计. 本文考虑 Hessian 商方程的问题 (1.1) 的 $k$-允许解的整体梯度估计.

当然, 我们注意到具有上述边界条件的 $k$-Hessian 方程, Hessian 商方程和 $k$-曲率方程的解的存在性仍未解决, 这是一个困难但是很有意义的问题.

首先给出一些记号. 在本文中, $\Omega_{\mu}=\{x\in\Omega\mid d(x)<\mu\}$ 表示靠近 $\partial \Omega$ 附近的环形区域, 其中 $d(x)$ 表示与光滑边界 $\partial \Omega$ 的距离函数. 通常, 如果 $\Omega_{\mu}$ 的 "宽度" 足够小, 则可以得到 $ d(x)$ 在 $\Omega_{\mu}$ 中是光滑的.

本文的其余部分组织如下. 在第 2 节中, 我们给出了初等对称多项式和 Hessian 商方程的一些代数性质. 在第 3 节和第 4 节中, 我们分别得到了上述两种边界条件下的问题 (1.1) 解的整体梯度估计.

2 预备知识

下面引入初等对称函数的基本性质, 相关证明可参考文献 [4],[11],[19]. 下面的叙述中, $\sigma_{k}(\lambda\mid i)$ 表示 $\lambda_{i}=0$ 的 $k$-阶初等对称函数, $\sigma_{k}(\lambda\mid ij)$ 表示 $\lambda_{i}=\lambda_{j}=0$ 的$k$-阶初等对称函数.

命题2.1 设 $\lambda=(\lambda_{1},\cdots,\lambda_{n})\in\mathbb{R}^{n}$, $k=1,\cdots,n$, 则下列等式成立

$\begin{align*} &\sigma_{k}(\lambda)=\sigma_{k}(\lambda\mid i)+\lambda_{i}\sigma_{k-1}(\lambda\mid i),\,\,\, \forall 1\leq i\leq n,\\ &\frac{\partial\sigma_{k}(\lambda)}{\partial\lambda_{i}}=\sigma_{k-1}(\lambda\mid i),\\ &\sum_{i}\lambda_{i}\sigma_{k-1}(\lambda\mid i)=k\sigma_{k}(\lambda),\\ &\sum_{i}\sigma_{k}(\lambda\mid i)=(n-k)\sigma_{k}(\lambda). \end{align*}$

命题2.2 (Newton-MacLaurin 不等式) 设 $\lambda\in\Gamma_{k}$, 并且 $k>l\geq0$, $r>s\geq0$, $k\geq r$, $l\geq s$. 则

$\begin{align*} \left[\frac{\sigma_{k}(\lambda)/C_{n}^{k}}{\sigma_{l}(\lambda)/C_{n}^{l}}\right]^{\frac{1}{k-l}} \leq \left[\frac{\sigma_{r}(\lambda)/C_{n}^{r}}{\sigma_{s}(\lambda)/C_{n}^{s}}\right]^{\frac{1}{r-s}}, \end{align*}$

其中 $C_{n}^{k}=\frac{n!}{k!(n-k)!}$.

命题2.3 设 $\lambda=(\lambda_{1},\cdots,\lambda_{n})\in\Gamma_{k}$, $k\in\{1,2,\cdots,n\}$, 并且

$\begin{align*} \lambda_{1}\geq\cdots\geq\lambda_{k}\geq\cdots\geq\lambda_{n}, \end{align*}$

则有

$\begin{align*} &\sigma_{k-1}(\lambda\mid n)\geq\sigma_{k-1}(\lambda\mid n-1)\geq\cdots \geq\sigma_{k-1}(\lambda\mid k)\geq\cdots\geq\sigma_{k-1}(\lambda\mid 1)>0;\\ &\lambda_{1}\geq\cdots\geq\lambda_{k}>0,\,\,\,\sigma_{k}(\lambda)\leq C_{n}^{k}\lambda_{1}\cdots\lambda_{k};\\ &\lambda_{1}\sigma_{k-1}(\lambda\mid 1)\geq\frac{k}{n}\sigma_{k}(\lambda). \end{align*}$

命题2.4 设 $\lambda\in\Gamma_{k}$, $2\leq k\leq n$, 并且 $\lambda_{1}\geq\cdots\geq\lambda_{k}\geq\cdots\geq\lambda_{n}$. 则对 $k\leq s\leq n$, 有

$\sigma_{k-1}(\lambda\mid s)\geq(\lambda_{1}-\lambda_{s})\cdots(\lambda_{k-1}-\lambda_{s}).$

引理2.1 若 $\lambda=(\lambda_{1}, \lambda_{2},\cdots,\lambda_{n})\in\Gamma_{k}$, $k\geq1$. 假设

$\begin{align*} \lambda_{1}\geq\cdots\geq\lambda_{k}\geq\cdots\geq\lambda_{n}, \end{align*}$

并且 $\exists\,\,\,\lambda_{s}< 0$. 则

$\sigma_{m}(\lambda\mid s)\geq\sigma_{m}(\lambda),\,\,\,\forall\,\,m=0,1,\cdots,k\,;$
$\frac{\partial\left[\frac{\sigma_{k}(\lambda)}{\sigma_{l}(\lambda)}\right]}{\partial\lambda_{s}} \geq \frac{n}{k}\frac{k-l}{n-l}\frac{1}{n-k+1} \sum_{i=1}^{n}\frac{\partial\left[\frac{\sigma_{k}(\lambda)}{\sigma_{l}(\lambda)}\right]}{\partial\lambda_{i}}, \,\,\,\forall \,\,0\leq l< k\,.$

引理2.2 设 $A=\{a_{ij}\}_{n\times n}$ 为对称矩阵, $k> l\geq 0$. 则

$\begin{matrix} \sum\limits_{i,j}\frac{\partial\left[\frac{\sigma_{k}(A)}{\sigma_{l}(A)}\right]}{\partial a_{ij}}a_{ij} =(k-l)\frac{\sigma_{k}(A)}{\sigma_{l}(A)}. \end{matrix}$

由初等对称函数的定义, 可得

$\begin{align*} \frac{\sigma_{k}(\alpha A)}{\sigma_{l}(\alpha A)} =\alpha^{k-l}\frac{\sigma_{k}(A)}{\sigma_{l}(A)}, \end{align*}$

其中 $\alpha$ 为正常数, 即 $\frac{\sigma_{k}(A)}{\sigma_{l}(A)}$ 是 $k-l$ 次齐次函数. 根据 Euler 定理, 结论成立.

对于问题 (1.1) 的 $k$-允许解, 文献 [3] 给出了它的内部梯度估计.

定理2.1 设 $\Omega\subset\mathrm{R}^{n}$ 为有界区域, 函数 $f(x,t)\in C^{1}\left(\overline{\Omega}\times\mathrm{R}\right)$, 并且 $f>0$, $f_t \ge 0$, $u\in C^{3}(\Omega)$ 是 Hessian 商方程 $\frac{\sigma_{k}\left(D^{2}u\right)}{\sigma_{l}\left(D^{2}u\right)}=f(x, u)$ 的 $k$-允许解, 则

$\begin{align*} \sup_{\Omega\setminus\Omega_{\mu}}|Du|\leq M_{1}, \end{align*}$

其中 $M_{1}$ 为依赖于 $n, k, l, \mu, |u|_{C^{0}}$, $|D_{x}f|_{C^{0}}$ 和 $|D_{t}f|_{C^{0}}$ 的常数.

3 预定夹角问题

本节考虑具有预定夹角边值条件的问题 (1.1), 即 $G(x,u,Du)=\frac{\partial u}{\partial\nu}+\cos\theta\sqrt{1+|Du|^{2}}$ 的情形. 下面定理给出了该问题的$k$-允许解的整体梯度估计.

定理3.1 设 $\Omega \subset \mathrm{R}^{n}(n\geq2)$ 为边界光滑的有界区域, $u$ 是下列问题的 $k$-允许解,

$\left\{\begin{array}{ll} \frac{\sigma_{k}\left(D^{2} u\right)}{\sigma_{l}\left(D^{2} u\right)}=f(x, u) & \text { 在 } \Omega \text { 内, }, \\ \frac{\partial u}{\partial \nu}=-\cos \theta \sqrt{1+|D u|^{2}} & \text { 在 } \partial \Omega \text { 上, } \end{array}\right.$

这里 $f(x,\,t)$ 是 $\Omega \times \mathrm{R}$ 上的光滑函数, 并且 $f>0$, $f_t \ge 0$. $\theta(x)$ 是 $\overline{\Omega}$ 上的光滑函数并且 $ |\cos\theta|\leq 1-b<1$, 其中 $b>0$ 为常数. $\nu$ 表示 $\partial \Omega$ 的单位内法向量. 假设 $|u|\leq M$, 则存在正的常数 $C=C(M,\, n,\, \overline{\Omega},\, b,\, |\theta|_{C^2(\overline{\Omega})},\, |f|_{C^1(\Omega\times[-M,\ M])})$ 使得

$\begin{aligned}|Du|\le C.\end{aligned}$

由定理 2.1, 我们只需在 $\Omega_{\mu}$ 上考虑梯度估计, 其中 $\mu$ 为待定正常数.

令 $v=\sqrt{1+|Du|^{2}}$, $w=v+\sum\limits_{l=1}^nu_{l}d_l\cos\theta$, 取辅助函数

$\begin{aligned}\Phi=\log w+h(u)+\tau d\,,\end{aligned}$

其中 $h(t)$ 为待定光滑函数, $\tau$ 是待定正常数.

假设 $x_{0}$ 是 $\Phi$ 在 $\overline{\Omega_{\mu}}$ 上的极大值点, 由于已有内部梯度估计, 接下来只需考虑以下两种情形.

情形 Ⅰ $x_{0}\in \partial\Omega$.

根据文献 [18] 中对于具有预定夹角边值条件的 Hessian 方程的证明过程可推得, 这种情形不会发生. 但是为了证明过程的完整性, 我们简要概述这部分相对独立的证明.

方便起见, 在 $x_0$ 点取活动标架, 使得 $\nu=\frac{\partial}{\partial x_n}$, 并且假设 $\frac{\partial}{\partial x_i} (i=1,2,\cdots,n-1)$ 是 $\partial \Omega$ 的切方向. 在该标架下,

$\frac{{\partial d}}{{\partial {x_i}}} = 0,\ \frac{{\partial d}}{{\partial {x_n}}} = 1,\ \frac{{{\partial ^2}d}}{{\partial {x_n}\partial {x_\alpha }}} = 0,\ \frac{{{\partial ^2}d}}{{\partial {x_i}\partial {x_j}}} = - {\kappa _i}{\delta _{ij}}, $

其中 $1\le i,j<n-1$, $1\le \alpha \le n$, $\kappa_i(i=1,2,\cdots,n-1)$ 是 $\partial \Omega$ 在 $x_0$ 点的主曲率.

因为 $x_0$ 是 $\Phi$ 在 $\overline{\Omega_{\mu}}$ 上的极大值点, 所以

$\begin{split}0 =& \Phi_i = \frac{w_i}{w} + h'u_i + \tau d_i = \frac{w_i}{w } + h'u_i, \ \ i=1,2,\cdots,n-1\,,\end{split}$

并且

$\begin{split}0 \ge& \Phi_n = \frac{w_n}{w} + h'u_n + \tau d_n = \frac{w_n}{w} + h'u_n + \tau.\end{split}$

直接计算, 可得

$\begin{matrix}\label{eta-n} w_n =& v_n + u_{n n} \cos\theta + u_n (\cos \theta)_n \nonumber\\ =& \frac{\sum\limits_{\alpha = 1}^n u_\alpha u_{\alpha n}}{v} + u_{nn}\cos \theta + u_n (\cos \theta )_n \nonumber\\ =& \frac{\sum\limits_{i = 1}^{n - 1} u_i u_{in}}{v} + \frac{ u_n u_{nn}}{v} + u_{nn}\cos \theta + u_n (\cos \theta )_n \nonumber\\ =& \frac{\sum\limits_{i = 1}^{n - 1} u_i u_{ni}}{v} + \frac{\sum\limits_{i,j = 1}^{n - 1} u_i k_{ij} u_j}{v} + u_n (\cos \theta )_n, \end{matrix}$

其中 $k_{ij}$ 表示边界上关于 $\nu$ 的 Weingarten 矩阵.

在 $\partial \Omega $ 上对 $u_n $ 求导, 则对 $i=1,2,\cdots,n-1$ 有

$\begin{align*} u_{ni} =& (- v\cos \theta)_i = -{v_i}\cos \theta - v(\cos \theta )_i\\ =& -\left[w_i -u_{ni}\cos \theta-\sum_{l=1}^{n-1}u_ld_{li}\cos\theta-u_n(\cos \theta )_i\right]\cos \theta - v(\cos \theta )_i \\ =& -w_i \cos \theta + u_{ni}\cos^2\theta +\sum_{l=1}^{n-1}u_ld_{li}\cos^2\theta+ u_n \cos \theta (\cos \theta )_i - v(\cos \theta )_i\,. \end{align*}$

结合 (3.2) 式可得

$\begin{split}u_{ni} = \frac{ h'w{u_i}\cos \theta+\sum\limits_{l=1}^{n-1}u_ld_{li}\cos^2\theta - v\left(1 + \cos^2 \theta \right)(\cos \theta )_i}{{\sin^2}\theta }.\end{split}$

将 (3.5) 式代入 (3.4) 式, 得

$\begin{align*} w_n =&\frac{\sum\limits_{i = 1}^{n - 1} u_i\left[ h'w{w_i}\cos \theta +\sum\limits_{l=1}^{n-1}u_ld_{li}\cos^2\theta - v\left(1 + \cos^2 \theta \right)(\cos \theta )_i\right]}{v\sin^2 \theta } \\ &+ \frac{\sum\limits_{i,j = 1}^{n - 1} u_i k_{ij} u_j}{v} + u_n(\cos \theta )_n. \end{align*}$

因此

$\begin{align*} 0 \ge\Phi_n=& \frac{\sum\limits_{i = 1}^{n - 1} u_i \left[ h'w{u_i}\cos \theta +\sum\limits_{l=1}^{n-1}u_ld_{li}\cos^2\theta - v\left(1 + \cos^2 \theta \right)(\cos \theta )_i\right]}{w v{\sin^2}\theta } \\ &+ \frac{\sum\limits_{i,j = 1}^{n - 1} u_i k_{ij} u_j }{w v} + \frac{ u_n(\cos \theta )_n}{w} + h'{u_n} + \tau \\ =& \frac{h'\cos \theta \left(v^2\sin^2\theta - 1\right)}{v\sin^2\theta} - \frac{\left(1 + \cos^2\theta \right)\sum\limits_{i = 1}^{n - 1}u_i (\cos \theta )_i}{w \sin^2 \theta }+\frac{\sum\limits_{i,l=1}^{n-1}u_ld_{li}u_i\cos^2\theta }{w v{\sin^2}\theta}\\ &+ \frac{\sum\limits_{i,j = 1}^{n - 1} u_i k_{ij} u_j }{w v}+ \frac{ u_n (\cos \theta )_n}{w} + h'{u_n} + \tau \\ =& - \frac{h'\cos \theta}{v\sin^2\theta} - \frac{\left(1 + \cos^2\theta \right)\sum\limits_{i = 1}^{n - 1}u_i(\cos \theta )_i }{w \sin^2\theta} +\frac{\sum\limits_{i,l=1}^{n-1}u_ld_{li}u_i\cos^2\theta }{w v{\sin^2}\theta}\\ &+ \frac{\sum\limits_{i,j = 1}^{n - 1} u_i k_{ij}u_j }{w v}+ \frac{ u_n (\cos \theta )_n}{w} + \tau. \end{align*}$

不失一般性, 假设 $v$ 充分大, 当我们取依赖于 $\theta $ 和 $\partial \Omega$ 的 $\tau $ 足够大时, 上面不等式的右端项大于零, 矛盾, 从而这种情形不会发生.

情形 Ⅱ $x_{0}\in \Omega_{\mu}$.

不失一般性, 可假设 $|Du|$ 在该点足够大, 使得 $|Du|, w, v$ 相互等价. 这里我们使用 Einstein 求和约定.

因为 $x_{0}$ 是极大值点, 所以

$\begin{aligned}0=\Phi_{i}=\frac{w_{i}}{w}+h'u_{i}+\tau d_{i},\end{aligned}$

并且

$\begin{align*} 0\geq\nonumber\Phi_{ij}&=\frac{w_{ij}}{w}-\frac{w_{i}w_{j}}{w^{2}}+h'u_{ij}+h" u_{i}u_{j}+\tau d_{ij}\\ &=\frac{w_{ij}}{w}-(h' u_{i}+\tau d_{i})(h' u_{j}+\tau d_{j})+h' u_{ij}+h" u_{i}u_{j}+\tau d_{ij}\\ &=\frac{w_{ij}}{w}-\tau h' u_{i}d_{j}-\tau h' u_{j}d_{i}-\tau^{2}d_{i}d_{j}+h' u_{ij}+\left[h"-(h')^{2}\right]u_{i}u_{j}+\tau d_{ij}\,. \end{align*}$

在 $x_{0}$ 点取活动标架使得 $D^{2}u(x_{0})$ 为对角矩阵. 令 $F=\sum\limits_{i=1}^n F^{ii}$, 则

$\begin{matrix}\label{111} 0\ge F^{ij}\Phi_{ij}=&\frac{F^{ij}w_{ij}}{w}+\left[h"-(h')^{2}\right]F^{ij}u_{i}u_{j}+h' F^{ij}u_{ij}\nonumber\\ &+\tau F^{ij}d_{ij}-2\tau h' F^{ij}u_{i}d_{j}-\tau^{2}F^{ij}d_{i}d_{j}.\nonumber\\ \triangleq&Ⅰ+Ⅱ+Ⅲ\,, \end{matrix}$

其中

$\begin{aligned}&Ⅰ=\frac{F^{ij}w_{ij}}{w}\,,\\&Ⅱ=\left[h"-(h')^{2}\right]F^{ij}u_{i}u_{j}\,,\\&Ⅲ=h' F^{ij}u_{ij}+\tau F^{ij}d_{ij}-2\tau h' F^{ij}u_{i}d_{j}-\tau^{2}F^{ij}d_{i}d_{j}\,.\end{aligned}$

首先处理 $Ⅰ$. 直接计算得

$\begin{aligned}w_{i}&=v_{i}+\sum_{l=1}^{n}\left(u_{li}d_{l}\cos\theta+\left(d_{l}\cos\theta\right)_{i}u_{l}\right)=\frac{u_{l}u_{li}}{v}+u_{li}d_{l}\cos \theta+(d_{l}\cos \theta)_{i}u_{l}\\&=\left(\frac{u_{l}}{v}+d_{l}\cos \theta\right)u_{li}+(d_{l}\cos \theta)_{i}u_{l},\end{aligned}$

$\begin{aligned}\nonumber w_{ij}=\left(\frac{u_{l}}{v}+d_{l}\cos \theta\right)u_{lij}+\left(\frac{u_{lj}}{v}-\frac{u_{l}u_{k}u_{kj}}{v^{3}}\right)u_{li}\!+\!( d_{l}\cos \theta)_{j}u_{li}+(d_{l}\cos \theta)_{i}u_{lj} +(d_{l}\cos \theta)_{ij}u_{l}.\end{aligned}$ 因为 $D^{2}u$ 和 $F^{ij}$ 是对角的, 所以

$\begin{matrix} F^{ij}w_{ij}&=\left(\frac{u_{l}}{v}+d_{l}\cos \theta\right)(f _{l}+f_{t}u_{l})\!+\!\left(\frac{1}{v}-\frac{u_{i}^{2}}{v^{3}}\right)F^{ii}u_{ii}^{2}\!+\!2(d_{i}\cos \theta)_{i}F^{ii}u_{ii} +(d_{l}(\cos \theta))_{ii}F^{ii}u_{l}\nonumber\\ &\geq \left(\frac{1}{v}-\frac{u_{i}^{2}}{v^{3}}\right)F^{ii}u_{ii}^{2}+2(d_{i}\cos \theta)_{i}F^{ii}u_{ii}-C |Du| F-C|Du|\nonumber\\ &\triangleq T-C |Du| F-C|Du|. \end{matrix}$

由 (3.6)式和 (3.8) 式, 在 $x_0$ 点有

$\begin{aligned}-w(h' u_{i}+\tau d_{i})=w_{i}=\left(\frac{u_{i}}{v}+ d_{i}\cos \theta\right)u_{ii}+u_{l}(d_{l}\cos \theta )_{i}\,,\ \ i=1, 2, \cdots, n.\end{aligned}$

$ K=\left\{ i\in \mathrm{I}\ \mid\ |d_{i}\cos \theta|+\frac{b}{8n}\leq |\frac{u_{i}}{v}| \right\},$

其中 $\mathrm{I}=\{1, 2, \cdot\cdot\cdot, n\}$. 显然指标集 $K$ 非空. 不妨假设 $v\geq\sqrt{\frac{4C}{\left(\frac{b}{8n}+|d_{i}\cos\theta|\right)}}$, $\forall i$, 则可进一步假设

$|\tau d_{i}|\leq \frac{1}{2} h' |u_{i}|,\ |u_{l}(d_{l}\cos \theta)_{i}| \leq \frac{1}{4}|h'wu_{i}| \ \ \mbox{for}\ \ i\in K.$

注意这里我们假设 $h'$ 有一个正下界. 在上述假设下, 有

$\begin{split}-Ch'w|u_i|\le u_{ii}\leq -\frac{Ch'}{1+|d_{i}\cos\theta|}<0 \ \ \mbox{for}\ \ i\in K.\end{split}$

那么对 $i\in K$, 由引理 2.1 可得

$ F^{ii}\geq C(n,k,l)F. $

因此,

$\begin{matrix} T=&\sum\limits_{i\in K}\left(\left(\frac{1}{v}-\frac{u_{i}^{2}}{v^{3}}\right)F^{ii}u_{ii}^{2}\!+\!2( d_{i}\cos \theta)_{i}F^{ii}u_{ii}\right )\!+\!\sum\limits_{i\notin K}\left(\left(\frac{1}{v}-\frac{u_{i}^{2}}{v^{3}}\right)F^{ii}u_{ii}^{2}\!+\!2(d_{i}\cos \theta )_{i}F^{ii}u_{ii}\right )\nonumber\\ \triangleq&T_{1}+T_{2}. \end{matrix}$

对 $T_1$, 根据 (3.11) 式推得

$\begin{aligned}T_{1}=\sum\limits_{i\in K}\left(\left(\frac{1}{v}-\frac{u_{i}^{2}}{v^{3}}\right)F^{ii}u_{ii}^{2}+2( d_{i}\cos \theta)_{i}F^{ii}u_{ii}\right )\geq\sum\limits_{i\in K}2(d_{i}\cos \theta)_{i}F^{ii}u_{ii}\geq-Cv^{2}F\,,\end{aligned}$

对 $T_2$, 由 $ax^2+bx\ge -\frac{b^2}{4a}$, $a>0$, 可得

$\begin{aligned}T_{2}=&\sum\limits_{i\notin K}\left(\left(\frac{1}{v}-\frac{u_{i}^{2}}{v^{3}}\right)F^{ii}u_{ii}^{2}+2(d_{i}\cos \theta)_{i}F^{ii}u_{ii}\right )\\\geq & \sum\limits_{i\notin K}\left(\frac{C}{vF^{ii}}(F^{ii}u_{ii})^{2}-2(d_{i}\cos \theta)_{i}F^{ii}u_{ii}\right)\geq-CvF\,.\end{aligned}$

从而

$\begin{aligned}I=\frac{F^{ij}w_{ij}}{w}\geq-CvF-CF-C\,.\end{aligned}$

对于 $II$,

$\begin{matrix} II= &\left[h"-(h')^{2}\right]F^{ij}u_{i}u_{j}=\left[h"-(h')^{2}\right]\sum\limits_{i=1}^{n}F^{ii}u_{i}^{2}\nonumber\\ \geq & \left[h"-(h')^{2}\right]\sum\limits_{i\in K}F^{ii}u_{i}^{2}\geq C\left[h"-(h')^{2}\right]v^{2}F\,. \end{matrix}$

对最后一项, 易得

$\begin{matrix}\label{III} Ⅲ=h' F^{ij}u_{ij}+\tau F^{ij}d_{ij}-2\tau h' F^{ij}u_{i}d_{j}-\tau^{2}F^{ij}d_{i}d_{j}\nonumber\\ \geq h'(k-l)f-C|Du|F-CF \geq -C |Du| F-C\,. \end{matrix}$

因此,

$\begin{align*} 0&\geq F^{ij}\Phi_{ij}=I+II+III\geq C\left[h"-(h')^{2}\right]v^{2}F-CvF-CF-C. \end{align*}$

利用 Newton-Maclaurin 不等式, 可得

$\begin{align*} F=\sum_{i=1}^{n}F^{ii} =&\frac{(n-k+1)\sigma_{k-1}\left(D^{2}u\right)\sigma_{l}\left(D^{2}u\right)-(n-l+1)\sigma_{k}\left(D^{2}u\right)\sigma_{l-1}\left(D^{2}u\right)} {\sigma_{l}^{2}\left(D^{2}u\right)}\\ \geq&\frac{k-l}{k}(n-k+1)\frac{\sigma_{k-1}\left(D^{2}u\right)}{\sigma_{l}\left(D^{2}u\right)}, \end{align*}$

若 $k-1=l$, 则

$\begin{align*} F\geq\frac{k-l}{k}(n-k+1); \end{align*}$

若 $k-1>l$, 则再次利用 Newton-Maclaurin 不等式可得

$\begin{align*} F\geq C(n,k,l)\left[\frac{\sigma_{k}\left(D^{2}u\right)}{\sigma_{l}\left(D^{2}u\right)}\right]^{\frac{k-l-1}{k-l}} = C(n,k,l)f^{\frac{k-l-1}{k-l}}, \end{align*}$

从而, $\forall \,\,0\leq l<k\leq n$, 有

$\begin{matrix}\label{Fbound} F\geq C>0. \end{matrix}$

因此

$\begin{aligned}0&\geq\frac{F^{ij}\Phi_{ij}}{F}\geq C\left[h"-(h')^{2}\right]v^{2}-Cv-C.\end{aligned}$

取 $h(t)=\frac{1}{2}\ln \frac{1}{{(3M - t)}}$, 则 $h"-(h')^{2}=(h')^{2}$. 此时 $h(t)$ 满足上述证明过程中所有假设. 于是在该点有 $v\leq C$, 从而, 在边界附近我们得到了梯度估计. 从而定理 3.1 得证.

4 斜导数问题

本节考虑具有斜导数边值条件的问题 (1), 即 $G(x,u,Du)=\frac{\partial u}{\partial\beta}-\varphi(x,u)$. 下面给出该问题的 $k$-允许解的整体梯度估计.

定理4.1 设 $\Omega$ 是 $\mathbb{R}^{n}(n\geq2)$ 中的有界光滑区域, $u$ 是下列问题的$k$-允许解,

$\left\{\begin{array}{ll} \frac{\sigma_{k}\left(D^{2} u\right)}{\sigma_{l}\left(D^{2} u\right)}=f(x, u) & \text { 在 } \Omega \text { 内, } \\ \frac{\partial u}{\partial \beta}=\varphi(x, u) & \text { 在 } \partial \Omega \text { 上. } \end{array}\right.$

其中 $f(x, t)$ 是定义在 $\Omega\times\mathbb{R}$ 上的光滑函数, 并且 $f>0$, $f_{t}\geq 0$. $\varphi(x, t)$ 是定义在 $\overline{\Omega}\times\mathbb{R}$ 上的光滑函数, $\beta$ 是 $\partial\Omega$ 上的光滑单位向量场并且 $\langle\beta,\nu\rangle=\cos \theta \geq c_{0}>0$, $c_{0}$ 为常数, $\nu$ 表示 $\partial\Omega$ 上的单位内法向量. 若 $|u|\leq M$, 则存在一个正常数 $C=C(M, n, \Omega, c_{0}, |\beta|_{C^{3}(\partial\Omega)}, |f|_{C^{1}(\Omega\times[-M, M])}$, $|\varphi|_{C^{3}(\Omega\times[-M, M])})$ 使得

$|Du|\leq C.$

斜导数边界条件在形式上是 Neumann 型边界条件的自然推广, 但是在计算方面与预定夹角边界条件的情形有些类似. 受文献 [18] 的启发, 首先处理边界数据, 令 $w=u-\frac{\varphi d}{\cos\theta}$, 则

$\begin{matrix}\label{partialw} \left(\frac{\partial w}{\partial\nu}\right)^{2} \leq|Dw|^{2}\cdot\sin^{2}\theta. \end{matrix}$

与第 3 节的讨论一样, 我们只需在 $\Omega_{\mu}$ 上进行梯度估计. 不失一般性, 可考虑 $\beta$ 在 $\Omega_{\mu}$ 上是光滑的, 并且 $\langle\beta, Dd\rangle\geq c_{0}$. 令

$\begin{align*} \phi=|Dw|^{2}-\left(\sum_{\alpha=1}^{n}w_{\alpha}d_{\alpha}\right)^{2} =\sum_{\alpha,\delta=1}^{n}\left(\delta_{\alpha\delta}-d_{\alpha}d_{\delta}\right)w_{\alpha}w_{\delta} =\sum_{\alpha,\delta=1}^{n}C^{\alpha\delta}w_{\alpha}w_{\delta}, \end{align*}$

取辅助函数

$\begin{matrix} \Phi=\log\phi+h(u)+\tau d, \end{matrix}$

其中 $h(t)$ 是待定的光滑函数, $\tau$ 是待定的正常数.

假设 $\Phi$ 在 $\overline{\Omega_{\mu}}$ 上的最大值在 $x_{0}$ 点取到. 由于定理 2.1 已经给出了内部梯度估计, 我们只需考虑下列两种情形.

情形 Ⅰ $x_{0}\in \partial\Omega$.

与文献 [18] 中对于 Hessian 方程的斜导数边值问题的讨论一样, 这种情形不会发生. 仍然基于证明的完整性, 我们简要概述本部分的证明.

在 $x_0$ 点取活动标架使得 $\nu=\frac{\partial}{\partial x_n}$, 并且 $\frac{\partial}{\partial x_i}(i=1,2,\cdots,n-1)$ 为 $\partial \Omega$ 的切方向. 于是有

$\frac{{\partial d}}{{\partial {x_i}}} = 0,\ \ \frac{{\partial d}}{{\partial {x_n}}} = 1,\ \ \frac{{{\partial ^2}d}}{{\partial {x_n}\partial {x_\alpha }}} = 0,\ \ \frac{{{\partial ^2}d}}{{\partial {x_i}\partial {x_j}}} = - {\kappa _i}{\delta _{ij}}\,,$

其中 $1\le i,j<n-1$, $1\le \alpha \le n$, $\kappa_i(i=1,2,\cdots,n-1)$ 为 $\partial \Omega$ 在 $x_0$ 点的主曲率.

由于 $x_0$ 是 $\Phi$ 在边界上的最大值点, 所以

$\begin{split}0 =& \Phi_i = \frac{\phi_i}{\phi} + h'u_i, \ \ i=1,2,\cdots,n-1\,,\end{split}$

并且

$\begin{split}0 \ge& \Phi_n = \frac{\phi_n}{\phi} + h'u_n + \tau d_n = \frac{\phi_n}{\phi} + h'u_n +\tau\,.\end{split}$

由 (4.3) 式和 $\phi$ 的定义, 可得

$\begin{split}- \phi h'{u_i} =& \phi_{i}= {\left(|Dw|^2\right)_i} - \left[\left(\sum\limits_{\alpha=1}^{n}{w_\alpha }{d_\alpha }\right)^2\right]_i \\=& 2\sum\limits_{j=1}^{n-1}{w_{ij}}{w_j} - 2{w_n}\sum\limits_{j=1}^{n-1}{d_{ij}}{w_j}, \ \ i=1,2,\cdots,n-1\,.\end{split}$

接下来处理 $\phi_n$.

$\begin{split}{\phi _n} =& 2\sum\limits_{\alpha = 1}^n {{w_\alpha }{w_{an}}} - 2{w_n}{w_{nn}} = 2\sum\limits_{i = 1}^{n - 1} {{w_i}{w_{in}}} = 2\sum\limits_{i = 1}^{n - 1} {{w_i}{w_{ni}}} + 2\sum\limits_{i,j = 1}^{n - 1} {{\kappa _{ij}}{w_i}{w_j}} \\=& - 2\sum\limits_{i = 1}^{n - 1} {{w_i}{{\left(\frac{{{\beta _l}}}{{{\beta _n}}}{w_l}\right)}_i}} + 2\sum\limits_{i,j = 1}^{n - 1} {{\kappa _{ij}}{w_i}{w_j}} \\=& - \frac{{2\sum\limits_{i,l = 1}^{n - 1} {{w_i}{w_{li}}{\beta _l}} }}{{{\beta _n}}} - 2\sum\limits_{i,l = 1}^{n - 1} {{w_i}{w_l}{{\left(\frac{{{\beta _l}}}{{{\beta _n}}}\right)}_i}} + 2\sum\limits_{i,j = 1}^{n - 1} {{\kappa _{ij}}{w_i}{w_j}} \\=& \frac{{\phi h'\sum\limits_{l = 1}^{n - 1} {{u_l}{\beta _l}} }}{{{\beta _n}}} - \frac{{2{w_n} \sum\limits_{l,j = 1}^{n - 1} {{d_{lj}}{w_j}{\beta _l}} }}{{{\beta _n}}} - 2\sum\limits_{i,l = 1}^{n - 1} {{w_i}{w_l}{{\left(\frac{{{\beta _l}}}{{{\beta _n}}}\right)}_i}} + 2\sum\limits_{i,j = 1}^{n - 1} {{\kappa _{ij}}{w_i}{w_j}}.\end{split}$

注意最后一个等式由 (4.5) 式推得, 其中 $\kappa_{ij}$ 表示边界上关于 $\nu$ 的 Weingarten 矩阵. 从而

$\begin{matrix}\label{bphi-n-over} 0 \ge {\Phi _n} =& \frac{{\frac{{\phi h'\sum\limits_{l = 1}^{n - 1} {{u_l}{\beta _l}} }}{{{\beta _n}}} - \frac{{2{w_n}\sum\limits_{j,l = 1}^{n - 1} {{d_{lj}}{w_j}{\beta _l}} }}{{{\beta _n}}} - 2\sum\limits_{i,l = 1}^{n - 1} {{w_i}{w_l}{{\left(\frac{{{\beta _l}}}{{{\beta _n}}}\right)}_i}} + 2\sum\limits_{i,j = 1}^{n - 1} {{\kappa _{ij}}{w_i}{w_j}} }}{\phi } + h'{u_n} + \tau \nonumber\\ =& \frac{{ - \frac{{2{w_n} \sum\limits_{l,j = 1}^{n - 1} {{d_{lj}}{w_j}{\beta _l}} }}{{{\beta _n}}} - 2\sum\limits_{i,j = 1}^{n - 1} {{w_i}{w_l}{{\left(\frac{{{\beta _l}}}{{{\beta _n}}}\right)}_i}} + 2\sum\limits_{i,j = 1}^{n - 1} {{\kappa _{ij}}{w_i}{w_j}} }}{\phi } +\frac{h'\varphi}{\cos \theta } + \tau\,. \end{matrix}$

由 $\phi$ 的定义以及 (4.1)式, 可得

$c_{0}^{2}|Dw|^{2}\leq \phi\leq |Dw|^{2}.$

进一步假设

$\begin{split}0<h'(t)<1,\ \ \forall \, t\in [-M,\ M]\,.\end{split}$

若令依赖于 $c_0,\, |\beta|_{C^1(\partial\Omega)},\, n$ 以及 $\partial\Omega$ 的几何性质的 $\tau$ 充分大, 则这种情形不会发生.

情形 Ⅱ $x_{0}\in \Omega_{\mu}$.

假设在 $x_{0}$ 点 $|Du|$ 足够大使得 $|Du|$ 和 $|Dw|$ 等价. 注意以下所有计算都在该点进行, 记号 $F^{ij}$ 和 $F$ 与第 3 节一样.

因为 $x_0$ 是最大值点, 所以 $\Phi_i =0$, $i=1,\,2,\,\cdots,\,n$, 从而

$\begin{split}\frac{\phi_i}{\phi} + h'{u_i}+\tau {d_i}= 0\,.\end{split}$

由于

$\begin{split}{\Phi _{ij}}=&\frac{\phi_{ij}}{\phi}-\frac{\phi_{i}\phi_{j}}{\phi^{2}} + h'{u_{ij}} + h"{u_i}{u_j} + \tau {d_{ij}}\\= &\frac{{{{\left( {\sum\limits_{k,l = 1}^n {{C^{kl}}{w_k}{w_l}} } \right)}_{ij}}}}{\phi } - (h'{u_i} + \tau {d_i})(h'{u_j} + \tau {d_j}) + h'{u_{ij}} + h"{u_i}{u_j} + \tau {d_{ij}}\\= & \frac{{{{\left( {\sum\limits_{k,l = 1}^n {{C^{kl}}{w_k}{w_l}} } \right)}_{ij}}}}{\phi } - \tau h'{u_i}{d_j} - \tau h'{u_j}{d_i} - {\tau ^2}{d_i}{d_j} + h'{u_{ij}} + \left[h" - {(h')^2}\right]{u_i}{u_j} + \tau {d_{ij}},\end{split}$

利用引理 2.2, 在 $x_0$ 点有

$\begin{matrix}\label{Fijphiij} 0\ge {F^{ij}}{\Phi _{ij}} = & \frac{{{F^{ij}}{{\left( {\sum\limits_{k,l = 1}^n {{C^{kl}}{w_k}{w_l}} } \right)}_{ij}}}}{\phi } - 2\tau h'\sum\limits_{i,j = 1}^n {{F^{ij}}{u_i}{d_j}} - {\tau ^2}\sum\limits_{i,j = 1}^n {{F^{ij}}{d_i}{d_j}} + h'(k-l)f\nonumber\\ &+ \left[h" - {(h')^2}\right]\sum\limits_{i,j = 1}^n {{F^{ij}}{u_i}{u_j}} + \tau \sum\limits_{i,j = 1}^n {{F^{ij}}{d_{ij}}}\nonumber\\ \ge& \frac{{{F^{ij}}{{\left( {\sum\limits_{k,l = 1}^n {{C^{kl}}{w_k}{w_l}} } \right)}_{ij}}}}{\phi } - 2\tau h' \left(\sum_{i,j=1}^{n}F^{ij}u_{i}u_{j}\right)^{\frac{1}{2}}\left(\sum_{i,j=1}^{n}F^{ij}d_{i}d_{j}\right)^{\frac{1}{2}} \\ &- {\tau ^2}\sum\limits_{i,j = 1}^n {{F^{ij}}{d_i}{d_j}} + h'(k-l)f + \left[h" - {(h')^2}\right]\sum\limits_{i,j = 1}^n {{F^{ij}}{u_i}{u_j}} + \tau \sum\limits_{i,j = 1}^n {{F^{ij}}{d_{ij}}}\nonumber\\ \ge& \frac{{{F^{ij}}{{\left( {\sum\limits_{k,l = 1}^n {{C^{kl}}{w_k}{w_l}} } \right)}_{ij}}}}{\phi } - (h')^{2}\sum_{i,j=1}^{n}F^{ij}u_{i}u_{j}-\tau^{2} \sum_{i,j=1}^{n}F^{ij}d_{i}d_{j} - {\tau ^2}\sum\limits_{i,j = 1}^n {{F^{ij}}{d_i}{d_j}}\nonumber\\ &+ h'(k-l)f + \left[h" - {(h')^2}\right]\sum\limits_{i,j = 1}^n {{F^{ij}}{u_i}{u_j}} + \tau \sum\limits_{i,j = 1}^n {{F^{ij}}{d_{ij}}}\nonumber\\ =& \sum\limits_{i,j = 1}^n {\frac{{{F^{ij}}{{\left( {{C^{kl}}{w_k}{w_l}} \right)}_{ij}}}}{\phi }} - 2{\tau ^2}\sum\limits_{i,j = 1}^n {{F^{ij}}{d_i}{d_j}} + h'(k-l)f \nonumber\\ &+ \left[h" - 2{(h')^2}\right]\sum\limits_{i,j = 1}^n {{F^{ij}}{u_i}{u_j}} + \tau \sum\limits_{i,j = 1}^n {{F^{ij}}{d_{ij}}} \nonumber\\ \triangleq& I + II + III + IV + V. \end{matrix}$

为了处理 (4.9) 式, 我们断言存在正常数 $C_{1}$ 使得

$\begin{matrix}\label{Dubound} \sup_{\Omega}|Du|^{2}\leq C_{1}\left(1+\sup_{\partial\Omega}|Du|^{2}\right). \end{matrix}$

事实上, 令

$\begin{align*} G=\log|Du|^{2}+\alpha|x|^{2}, \end{align*}$

$\begin{align*} G_{i}=&\sum_{k}\frac{2u_{k}u_{ki}}{|Du|^{2}}+2\alpha x_{i},\\ G_{ij}=&\sum_{k}\frac{2u_{ki}u_{kj}+2u_{k}u_{kij}}{|Du|^{2}}-\sum_{k,l}\frac{4u_{k}u_{ki}u_{l}u_{lj}}{|Du|^{4}}+2\alpha\delta_{ij}\\ =&\sum_{k}\frac{2u_{ki}u_{kj}+2u_{k}u_{kij}}{|Du|^{2}}- \left(G_{i}G_{j}-2\alpha G_{i}x_{j}-2\alpha G_{j}x_{i}+4\alpha^{2}x_{i}x_{j}\right)+2\alpha\delta_{ij}, \end{align*}$

从而,

$\begin{align*} &\sum_{i,j=1}^{n}F^{ij}G_{ij}\\ =&\frac{2}{|Du|^{2}}\sum_{i,j,k}\left[F^{ij}u_{ki}u_{kj}+u_{k}f_{x_{k}}+u_{k}^{2}f_{u}\right] -\sum_{i,j}F^{ij}\left(G_{i}G_{j}-4\alpha G_{i}x_{j}+4\alpha^{2}x_{i}x_{j}\right)+2\alpha F\,\\ \geq&\frac{2}{|Du|^{2}}\sum_{i,j,k}\left[F^{ij}u_{ki}u_{kj}+u_{k}f_{x_{k}}\right] -\sum_{i,j}F^{ij}\left(G_{i}G_{j}-4\alpha G_{i}x_{j}+4\alpha^{2}x_{i}x_{j}\right)+2\alpha F. \end{align*}$

于是有

$\begin{align*} &\sum_{i,j=1}^{n}F^{ij}G_{ij}+\sum_{i,j=1}^{n}F^{ij}G_{i}(G_{j}-4\alpha x_{j})\\ \geq&\frac{2}{|Du|^{2}}\langle D_{x}f,Du\rangle-4\alpha^{2}\sum_{i,j}F^{ij}x_{i}x_{j}+2\alpha F\\ =&\frac{2}{|Du|^{2}}\langle D_{x}f,Du\rangle -4\alpha^{2}|x|^{2}\sum_{i,j}F^{ij}\frac{x_{i}}{|x|}\frac{x_{j}}{|x|}+2\alpha F\\ \geq&\frac{2}{|Du|^{2}}\langle D_{x}f,Du\rangle -4\alpha^{2}\lambda_{max}(F^{ij})|x|^{2}+2\alpha F\\ \geq&\frac{2}{|Du|^{2}}\langle D_{x}f,Du\rangle -4\alpha^{2}|x|^{2}F+2\alpha F, \end{align*}$

注意, 此处 $F\geq C>0$ 仍然成立. 假设 $|Du|$ 足够大并且 $\alpha$ 充分小, 使得 $-4\alpha^{2}|x|^{2}F+\alpha F\geq \frac{C\alpha}{2}>0 $, 则

$\begin{align*} \sum_{i,j=1}^{n}F^{ij}G_{ij}+\sum_{i,j=1}^{n}F^{ij}G_{i}(G_{j}-4\alpha x_{j}) \geq 0. \end{align*}$

由极大值原理可得, (4.10) 式成立.

根据文献 [18] 中的相关证明, 假设 $|Du|$ 在 $\partial\Omega$ 上的最大值在 $x_{1}$ 点取到, 由 (4.10) 式, 可以假设

$|Du|^{2}(x_{1})\geq 4\sup_{\partial\Omega}\left(\left|\frac{\varphi}{\cos\theta}\right|\right)^{2}.$

由于 $\Phi(x_0)\ge \Phi(x_1)$, 则

$\begin{matrix}\label{phix0} \phi ({x_0}) \ge & C(\tau,\mu ){{\rm{e}}^{ - 2Mh'}}\phi ({x_1}) = C(\tau,\mu ){{\rm{e}}^{ - 2Mh'}}\left[|Dw{|^2} - {\left(\frac{{\partial w}}{{\partial \nu}}\right)^2}\right]({x_1})\nonumber\\ \ge & C(\tau,\mu ){{\rm{e}}^{ - 2Mh'}}\left(|Dw{|^2}{\cos ^2}\theta \right)({x_1})\nonumber\\ \ge & {c_0}^2C(\tau,\mu ){{\rm{e}}^{ - 2Mh'}}|Dw{|^2}({x_1})\nonumber\\ = &{c_0}^2C(\tau,\mu ){{\rm{e}}^{ - 2Mh'}}\left|D u - \frac{\varphi }{{\cos \theta }}\nu\right|^2({x_1})\nonumber\\ \ge & \frac{{{c_0}^2C(\tau,\mu ){{\rm{e}}^{ - 2Mh'}}}}{4}|D u{|^2}({x_1}), \end{matrix}$

注意上式最后一个不等式由 (4.11) 式 以及不等式 $(x-y)^2\ge \frac{x^2}{2}-y^2$ 推得.

进一步假设

$\begin{split}0<h'(t)<\frac{1}{2M},\ \ \forall \, t\in [-M,\ M],\end{split}$

则结合 (4.10), (4.11) 和 (4.12) 式, 可得

$\begin{matrix}\label{phix0-over} \phi ({x_0}) \ge & \frac{{{c_{0}^{2}}C(\tau,\mu )}}{{4{C_1}e}}\left(\mathop {\sup }\limits_\Omega |Du{|^2} - {C_1}\right) \ge \frac{{{c_{0}^{2}}C(\tau,\mu )}}{{8{C_1}e}}\mathop {\sup }\limits_\Omega |Du{|^2} \ge \frac{{{c_{0}^{2}}C(\tau,\mu )}}{{8{C_1}e}}|Du{|^2}({x_0})\nonumber\\ \ge & \frac{{{c_{0}^{2}}C(\tau,\mu )}}{{9{C_1}\rm{e}}}|Dw{|^2}({x_0})\triangleq C_{0} |Dw{|^2}({x_0}). \end{matrix}$

不失一般性, 这里可以假设 $C_0\in (0,\ 1).$

接下来, 我们来说明当 $|Du|$ 足够大时, 存在 $i\in\{1,2,\cdots,n\}$ 使得 $u_{i}$, $w_{i}$, $|Du|$, $|Dw|$ 相互等价并且 $u_{ii} < 0$.

通过在 $x_0$ 点旋转标架, 可以假设 $D^{2}u(x_{0})$ 为对角阵.

对 $k=1,\,2,\cdots,n$, 记 ${T_k} = \sum\limits_{l = 1}^n {{C^{kl}}{w_l}} $, $\overrightarrow{T}=(T_1,\,T_2,\cdots,T_n)$, 则

$\begin{split}\phi = \sum\limits_{i,j = 1}^n {{C^{ij}}{w_i}{w_j}} = \sum\limits_{j = 1}^n {{T_j}{w_j}}=\langle\overrightarrow{T},\ Dw \rangle.\end{split}$

由 (4.14) 式推得

$\begin{align*} C_{0}|Dw|^{2}\leq\phi=\langle\overrightarrow{T}, Dw\rangle\leq n\max_{k}\{T_{k}w_{k}\}. \end{align*}$

不妨令 $T_{1}w_{1}=\displaystyle\max_{k}\{T_{k}w_{k}\}$, 可得

$\begin{split}\frac{w_1}{T_1} \ge \frac{C_0 }{nT_{1}^{2}}|Dw{|^2} \ge \frac{C_0 }{n|T|^{2}}|Dw{|^2}.\end{split}$

另一方面,

$\begin{align*} |\overrightarrow{T}|^{2}=&\langle\overrightarrow{T},\overrightarrow{T}\rangle =\sum_{k,l,m}C^{kl}w_{l}C^{km}w_{m}\\ =&\sum_{k}\left(\sum_{l=1}^{n}\delta_{kl}w_{l}-d_{k}\sum_{l=1}^{n}d_{l}w_{l}\right) \left(\sum_{m=1}^{n}\delta_{km}w_{m}-d_{k}\sum_{m=1}^{n}d_{m}w_{m}\right)\\ =&\sum_{k}\left(w_{k}-d_{k}\langle Dw,Dd\rangle\right)^{2}\\ =&|Dw|^{2}-\langle Dw,Dd\rangle^{2}\\ \leq&|Dw|^{2}, \end{align*}$

$\begin{align*} |\overrightarrow{T}|\leq|Dw|. \end{align*}$

结合 (4.14) 式, 可得

$\begin{split}C_0 |Dw| \le {\rm{|}}T{\rm{|}} \le |Dw|.\end{split}$

因此,

$\begin{split}\frac{{{w_1}}}{{{T_1}}} \ge \frac{C_0}{n}.\end{split}$

由 $u_{1}=w_{1}+\left(\frac{\varphi d}{\cos\theta}\right)_{1}$, 以及 $\varphi,\,\,d$ 的光滑性, 可令 $\mu$ 充分小使得

$\begin{matrix}\label{u1=w1} \frac{u_{1}}{T_{1}}=\frac{w_{1}}{T_{1}}+\frac{\left(\frac{\varphi d}{\cos\theta}\right)_{1}}{T_{1}} \geq\frac{C_{0}}{3n}, \end{matrix}$

从而 $u_{1}$ 和 $w_{1}$ 等价. 因为

$\begin{align*} u_{1}|Dw|\geq u_{1}w_{1}=\frac{u_{1}}{T_{1}}\cdot T_{1}w_{1}\geq\frac{C_{0}^{2}}{3n^{2}}|Dw|^{2}, \end{align*}$

我们有

$\begin{matrix}\label{u1bound} u_{1}\geq C|Dw|. \end{matrix}$

综上讨论我们推得 $u_{1}$, $w_{1}$, $T_{1}$, $|T|$, $|Du|$ 和 $|Dw|$ 相互等价.

计算得

$\begin{matrix}\label{wij-uij} {w_i} =& {u_i}\left(1 - \frac{{{\varphi _t}d}}{{\cos \theta }}\right) - \varphi_i\left(\frac{d}{\cos\theta}\right)- \varphi\left(\frac{d}{\cos\theta}\right)_i\,,\nonumber\\ {w_{ij}} =& {u_{ij}}\left(1 - \frac{{{\varphi _t}d}}{{\cos \theta }}\right) - \frac{{{\varphi _{tt}}d}}{{\cos \theta }}{u_i}{u_j} -\varphi_{tj}u_i\left(\frac{d}{\cos\theta}\right)- {\varphi _t}{u_i}{\left(\frac{d}{{\cos \theta }}\right)_j} - {\varphi _t}{u_j}{\left(\frac{d}{{\cos \theta }}\right)_i}\nonumber\\ &- \frac{d}{{\cos \theta }}{\varphi _{ij}} -\varphi_{ti}u_j\left(\frac{d}{\cos\theta}\right)- {\left(\frac{d}{{\cos \theta }}\right)_i}{\varphi _j} - {\left(\frac{d}{{\cos \theta }}\right)_j}{\varphi _i} - {\left(\frac{d}{{\cos \theta }}\right)_{ij}}\varphi\,. \end{matrix}$

由于 $u_{1}$, $w_{1}$, $|Du|$ 和 $|Dw|$ 相互等价, 对 $i=j=1$ 有,

$\begin{split}{u_{11}}\left(1 - \frac{{{\varphi _t}d}}{{\cos \theta }}\right) \leq w_{11} + Cd|Dw|^{2} + C|Dw|\,.\end{split}$

另一方面, 由 (4.8) 式, 可得

$\begin{split}{-\phi} \left( h'{u_i}+\tau {d_i}\right)= {\phi_i}=\sum\limits_{k,l = 1}^n {{{C^{kl}}_{,i}}}{w_k}{w_l} + 2\sum\limits_{l = 1}^n {{T_l}{w_{li}}} \,.\end{split}$

特别地, 对 $i=1$, 我们推得

$\begin{split}{-\frac{\phi}{2T_{1}}} \left( h'{u_1}+\tau {d_1}\right)=&\sum\limits_{k,l = 1}^n {\frac{{C^{kl}}_{,1}}{2T_{1}}}{w_k}{w_l} + \sum\limits_{l = 1}^n {\frac{T_l}{T_1}{w_{l1}}}\\=&\sum\limits_{k,l = 1}^n {\frac{{C^{kl}}_{,1}}{2T_{1}}}{w_k}{w_l} + \sum\limits_{l = 2}^n {\frac{T_l}{T_1}{\left(-\frac{\varphi d}{\cos\theta}\right)_{l1}}}+w_{11}\\\geq&-C|Dw|-Cd|Dw|^{2}+w_{11}.\end{split}$

这里用到了 $D^{2}u$ 的对角性质. 因此

$\begin{matrix}\label{w11} w_{11}\leq-\frac{h'u_{1}\phi}{2T_{1}}-\frac{\tau d_{1}\phi}{2T_{1}}+C|Dw|+Cd|Dw|^{2} \leq-\frac{C_{0}^{2}}{6n}h'|Dw|^{2}+C|Dw|+Cd|Dw|^{2}, \end{matrix}$

将 (4.24) 式代入 (4.21) 式可得

$\begin{split}{u_{11}}\left(1 - \frac{{{\varphi _t}d}}{{\cos \theta }}\right) \le - \frac{{{C_{0}^{2}}}}{{6n}}h'|Dw|^{2} + Cd|Dw{|^2} + C|Dw|\,.\end{split}$

若假设 $h'$ 有一个正下界, $\mu$ 足够小, 则由 $|Dw|$ 充分大可推得

$\begin{split}{u_{11}}<0\,.\end{split}$

从而利用引理 2.1, 可得

$\begin{split}{F^{11}} \ge C\left( {n,k,l} \right)F\,.\end{split}$

现在, 我们回到 (4.9) 式继续处理 $\Phi$ 的二阶导数. 对于后四项, 根据 (4.19) 式和 (4.25) 式, 易得

$II = - 2{\tau ^2} {F^{ij}}{d_i}{d_j} \ge - 2{\tau ^2} F\,,$
$III = h'(k-l)f \ge 0\,,$
$IV= \left[h" - 2{(h')^2}\right]\sum\limits_{i,j = 1}^n {{F^{ij}}{u_i}{u_j}} \ge \left[h" - 2{(h')^2}\right] {F^{11}}{u_1}^2 \ge C_2\left[h" - 2{(h')^2}\right]{\rm{|}}Dw{{\rm{|}}^2}F\,,$
$V = \tau {F^{ij}}{d_{ij}} \ge - {k_0}\tau \sum\limits_{i = 1}^n {{F^{ii}}} = - {k_0}\tau F\,, $

其中 $k_0$ 是与 $\partial\Omega$ 的几何性质相关的正常数, $h" - 2{(h')^2}$ 为待定的正函数.

为了处理 $I$, 记

$\begin{split}I =& \frac{{\sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}_{,ij}{w_k}{w_l}} }}{\phi }+ \frac{{2\sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}{w_{ijk}}{w_l}} }}{\phi }\\& + \frac{{4\sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}_{,j}{w_{ik}}{w_l}} }}{\phi }+ \frac{2{\sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}{w_{ik}}{w_{jl}}} }}{\phi }\\\triangleq& {I_1} + {I_2} + {I_3} + {I_4}.\end{split}$

对于 $I_1$, 容易推得

$\begin{split}\phi{I_1} = {\sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}_{,ij}{w_k}{w_l}} } \ge - C|Dw|^{2}F\,.\end{split}$

对于 $I_2$, 因为

$\begin{split}\phi {I_2} = & 2\sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}{w_{ijk}}{w_l}} = 2\sum\limits_{i,j,k = 1}^n {{F^{ij}}{T_k}{{\left(u - \frac{{\varphi (x,u)d}}{{\cos \theta }}\right)_{ijk}}}} \\= & 2\sum\limits_{i,j,k = 1}^n {{T_k}\left[ {{F^{ij}}{u_{ijk}} - {F^{ij}}{{\left(\frac{{\varphi (x,u)d}}{{\cos \theta }}\right)_{ijk}}}} \right]}\\= & 2\sum\limits_{k = 1}^n {{T_k}\left[ {f_{x_{k}} +f_{t}u_{k}- \sum\limits_{i,j = 1}^n {F^{ij}}{{\left(\frac{{\varphi (x,u)d}}{{\cos \theta }}\right)_{ijk}}}} \right]}\,,\end{split}$

下面计算 $(\frac{{\varphi (x,u)d}}{{\cos \theta }})_{ijk}$,

$\begin{split}\left(\frac{{\varphi (x,u)d}}{{\cos \theta }}\right)_{ij}=& {(\varphi )_{ij}}\frac{d}{{\cos \theta }}+ {(\varphi )_{i}}{\left(\frac{d}{{\cos \theta }}\right)_j} + {(\varphi )_{j}}{\left(\frac{d}{{\cos \theta }}\right)_i}+ \varphi {\left(\frac{d}{{\cos \theta }}\right)_{ij}}\,,\\\left(\frac{{\varphi (x,u)d}}{{\cos \theta }}\right)_{ijk}=& {(\varphi )_{ijk}}\frac{d}{{\cos \theta }} + {(\varphi )_{ij}}{\left(\frac{d}{{\cos \theta }}\right)_k} + {(\varphi )_{ik}}{\left(\frac{d}{{\cos \theta }}\right)_j} + {(\varphi )_{jk}}{\left(\frac{d}{{\cos \theta }}\right)_i} \\&+ {(\varphi )_i}{\left(\frac{d}{{\cos \theta }}\right)_{jk}} + {(\varphi )_j}{\left(\frac{d}{{\cos \theta }}\right)_{ik}} + {(\varphi )_k}{\left(\frac{d}{{\cos \theta }}\right)_{ij}} + \varphi {\left(\frac{d}{{\cos \theta }}\right)_{ijk}}\,,\end{split}$

其中

$\begin{align*}\label{varphi-derivative} {(\varphi )_i} =& {\varphi _i} + {\varphi _t}{u_i}\,,\\ {(\varphi )_{ij}} =& {\left( {{\varphi _i} + {\varphi _t}{u_i}} \right)_j} = {\varphi _{ij}} + {\varphi _{it}}{u_j} + {\varphi _{tj}}{u_i} + {\varphi _{tt}}{u_i}{u_j} + {\varphi _t}{u_{ij}}\,,\\ {(\varphi )_{ijk}} =& {\left( {{\varphi _{ij}} + {\varphi _{it}}{u_j} + {\varphi _{tj}}{u_i} + {\varphi _{tt}}{u_i}{u_j} + {\varphi _t}{u_{ij}}} \right)_k}\\ =&{\varphi _{ijk}} + {\varphi _{ijt}}{u_k} + {\varphi _{itk}}{u_j} + {\varphi _{itt}}{u_j}{u_k} + {\varphi _{it}}{u_{jk}}\\ &+ {\varphi _{tjk}}{u_i} + {\varphi _{tjt}}{u_i}{u_k} + {\varphi _{tj}}{u_{ik}}\\ &+ {\varphi _{ttk}}{u_i}{u_j} + {\varphi _{ttt}}{u_i}{u_j}{u_k} + {\varphi _{tt}}{u_{ik}}{u_j} + {\varphi _{tt}}{u_i}{u_{jk}}\\ &+ {\varphi _{tk}}{u_{ij}} + {\varphi _{tt}}{u_k}{u_{ij}} + {\varphi _t}{u_{ijk}}\,. \end{align*}$

注意到

$\sum\limits_{i,j = 1}^n {{F^{ij}}{u_{ij}}} = (k-l)f,\ \sum\limits_{i,j = 1}^n {{F^{ij}}{u_{ijk}} } =f_{x_{k}}+f_{t}u_{k},$
$ \sum\limits_{j = 1}^n {{F^{ij}}{u_{jk}}} = {F^{ii}}{u_{ik}}\ (\mbox{固定}\ i),\ 0 < \sum\limits_{j = 1}^n {{F^{ij}}{u_i}{u_j}} \le |Du{|^2}F,$

从而推得

$\begin{split}&\sum_{k}T_{k}(f_{k}+f_{t}u_{k})\geq-C|Dw|^{2};\\&\sum_{i,j,k}T_{k}F^{ij}(\varphi)_{ijk}\frac{d}{\cos\theta}\geq-Cd|Dw|^{4}F-Cd|Dw|^{2}-Cd|Dw|^{2}\sum_{i}|F^{ii}u_{ii}|;\\&\sum_{i,j,k}T_{k}F^{ij}(\varphi)_{ij}\left(\frac{d}{\cos\theta}\right)_{k}\geq-C|Dw|^{3}F-C|Dw|;\\&\sum_{i,j,k}T_{k}F^{ij}\left[(\varphi)_{ik}\left(\frac{d}{\cos\theta}\right)_{j}+(\varphi)_{jk}\left(\frac{d}{\cos\theta}\right)_{i}\right]\geq-C|Dw|\sum_{i}|F^{ii}u_{ii}|-C|Dw|^{3}F;\\&\sum_{i,j,k}T_{k}F^{ij}\left[(\varphi)_{i}\left(\frac{d}{\cos\theta}\right)_{jk}+(\varphi)_{j}\left(\frac{d}{\cos\theta}\right)_{ik}+(\varphi)_{k}\left(\frac{d}{\cos\theta}\right)_{ij}\right]\geq-C|Dw|^{2}F;\\&\sum_{i,j,k}T_{k}F^{ij}\varphi\left(\frac{d}{\cos\theta}\right)_{ijk}\geq-C|Dw|F.\end{split}$

因此我们有

$\begin{split}\phi {I_2} &\ge - Cd|Dw{|^4}F - C|Dw{|^3}F - C|Dw|^{2}-Cd|Dw|^{2}\\& - Cd|Dw{|^2}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} |- C{\rm{|}}Dw{\rm{|}}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} |\,.\end{split}$

类似地, 我们处理剩下两项.

$\begin{align*} \phi {I_3} = &4\sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}_{,j}{w_{ik}}{w_l}} =4\sum\limits_{i,j,k,l = 1}^n {F^{ij}}{C^{kl}}_{,j}\left(u-\frac{\varphi d}{\cos\theta}\right)_{ik}{w_l}\nonumber\\ = &4\sum\limits_{i,j,k,l = 1}^n {F^{ij}}{C^{kl}}_{,j}w_{l}u_{ik}- 4\sum\limits_{i,j,k,l = 1}^n {F^{ij}}{C^{kl}}_{,j}w_{l}\left(\frac{{\varphi (x,u)d}}{{\cos \theta }}\right)_{ik}\,. \end{align*}$

由下列计算,

$\begin{split}&\sum_{i,j,k,l}F^{ij}{C^{kl}}_{,j}w_{l}u_{ik}\geq-C|Dw|\sum_{i}|F^{ii}u_{ii}|;\\&\sum_{i,j,k,l}F^{ij}{C^{kl}}_{,j}w_{l}(\varphi)_{ik}\frac{d}{\cos\theta}\geq-Cd|Dw|\sum_{i}|F^{ii}u_{ii}|-Cd|Dw|^{3}F;\\&\sum_{i,j,k,l}F^{ij}{C^{kl}}_{,j}w_{l}\left[(\varphi)_{i}\left(\frac{d}{\cos\theta}\right)_{k}+(\varphi)_{k}\left(\frac{d}{\cos\theta}\right)_{i}\right]\geq-C|Dw|^{2}F;\\&\sum_{i,j,k,l}F^{ij}{C^{kl}}_{,j}w_{l}\varphi\left(\frac{d}{\cos\theta}\right)_{ik}\geq-C|Dw|F\,,\end{split}$

我们得

$\begin{matrix}\label{I3} \phi {I_3} \ge & - C{\rm{|}}Dw{\rm{|}}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} | -Cd|Dw|^{3}F-C|Dw|^{2}F - Cd{\rm{|}}Dw{\rm{|}}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} |\,. \end{matrix}$

对于 $I_4$,

$\begin{align*} \phi {I_4} = &2 \sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}{w_{ik}}{w_{jl}}} \nonumber\\ = &2 \sum\limits_{i,j,k,l = 1}^n {{F^{ij}}{C^{kl}}{\left(u-\frac{\varphi d}{\cos\theta}\right)_{ik}}{\left(u-\frac{\varphi d}{\cos\theta}\right)_{jl}}} \nonumber\\ = &2\sum\limits_{i,j,k,l}F^{ij}C^{kl}u_{ik}u_{jl} -4\sum_{i,j,k,l}F^{ij}C^{kl}u_{ik}\left(\frac{\varphi d}{\cos\theta}\right)_{jl} +2\sum_{i,j,k,l}F^{ij}C^{kl}\left(\frac{\varphi d}{\cos\theta}\right)_{ik} \left(\frac{\varphi d}{\cos\theta}\right)_{jl}\nonumber\\ \triangleq &I_{41}+I_{42}+I_{43}\,. \end{align*}$

因为

$\begin{split}I_{41}&=2\sum_{i}F^{ii}C^{ii}u_{ii}^{2};\\I_{42}&\geq-4\frac{\varphi_{t} d}{\cos\theta}\sum_{i}F^{ii}C^{ii}u_{ii}^{2}-Cd|Dw|^{2}\sum_{i}|F^{ii}u_{ii}|-C|Dw|\sum_{i}|F^{ii}u_{ii}|;\\I_{43}&\geq2\left(\frac{\varphi_{t}d}{\cos\theta}\right)^{2}\sum_{i}F^{ii}C^{ii}u_{ii}^{2}-Cd|Dw|^{2}\sum_{i}|F^{ii}u_{ii}|-Cd|Dw|^{4}F-C|Dw|^{2}F.\end{split}$

我们推得

$\begin{matrix}\label{I4} \phi {I_4} \ge& \sum\limits_{i = 1}^n {{F^{ii}}{C^{ii}}{u_{ii}}^2} - Cd|Dw{|^2}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} | \\ & - C|Dw|\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} | - Cd|Dw{|^4}F - C|Dw{|^2}F\,. \end{matrix}$

结合 (4.30)-(4.33) 式, 可得

$\begin{matrix}\label{I-over} \phi I\ge & \sum\limits_{i = 1}^n {{F^{ii}}{C^{ii}}{u_{ii}}^2} - Cd|Dw{|^2}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} |- C{\rm{|}}Dw{\rm{|}}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} |\nonumber\\ & - Cd|Dw{|^4}F - C|Dw{|^3}F-C|Dw|^{2}-Cd|Dw|^{2}\,. \end{matrix}$

$\begin{split}H=\sum\limits_{i = 1}^n {{F^{ii}}{C^{ii}}{u_{ii}}^2} - Cd|Dw{|^2}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} |- C{\rm{|}}Dw{\rm{|}}\sum\limits_{i = 1}^n {|{F^{ii}}{u_{ii}}} |\,,\end{split}$

下面给出 $H$ 的一个下界.

令 $C^{i_0i_0}$ 为 $\{C^{ii}\}_{i=1}^n$ 的最小项, 则有 $C^{ii}\ge \frac{1}{2}$, $\forall i\neq i_{0}, i=1,\cdots,n$. 事实上, 由反证法, 假设存在 $i_{1}\neq i_{0}$ 使得 $C^{i_{1},i_{1}}<\frac{1}{2}$. 则

$\begin{align*} \sum_{i=1}^{n}C^{ii} &=\sum_{\substack{i=1\\i\neq i_{0},i_{1}}}^{n}C^{ii}+C^{i_{0},i_{0}}+C^{i_{1},i_{1}} =\sum_{\substack{i=1\\i\neq i_{0},i_{1}}}^{n}\left(1-d_{i}^{2}\right)+C^{i_{0},i_{0}}+C^{i_{1},i_{1}}\\ &<(n-2)-\sum_{\substack{i=1\\i\neq i_{0},i_{1}}}^{n}d_{i}^{2}+\frac{1}{2}+\frac{1}{2} =n-1, \end{align*}$

这与 $\sum\limits_{i=1}^{n}C^{ii}=n-1$ 矛盾.

利用方程可得

$\begin{split}{F^{i_0i_0}}{u_{i_0i_0}} = (k-l)f - \sum\limits_{\substack{\alpha = 1\\ \alpha\neq i_{0}}}^n {{F^{\alpha \alpha }}{u_{\alpha \alpha }}}.\end{split}$

因此, 由 $ax^2+bx\ge -\frac{b^2}{4a}$, $a>0$, 推得

$\begin{align*} H=& {F^{i_0i_0}}{C^{i_0i_0}}{u_{i_0i_0}}^2 + \sum\limits_{\substack{i = 1\\i\neq i_{0}}}^n {{F^{ii}}{C^{ii}}{u_{ii}}^2} - C\left(d|Dw{|^2}+{\rm{|}}Dw{\rm{|}}\right)\sum\limits_{\substack{i = 1\\i\neq i_{0}}}^n {|{F^{ii}}{u_{ii}}} |\\ &- C\left(d|Dw{|^2}+{\rm{|}}Dw{\rm{|}}\right){|{F^{i_0i_0}}{u_{i_0i_0}}} |\\ \ge& \sum\limits_{\substack{i = 1\\i\neq i_{0}}}^n {{F^{ii}}{C^{ii}}{u_{ii}}^2} - C\left(d|Dw{|^2}+{\rm{|}}Dw{\rm{|}}\right)\sum\limits_{\substack{i = 1\\i\neq i_{0}}}^n {|{F^{ii}}{u_{ii}}} |- C\left(d|Dw{|^2}+{\rm{|}}Dw{\rm{|}}\right)(k-l)f\\ \ge& -\sum\limits_{\substack{i = 1\\i\neq i_{0}}}^n \frac{\left[C\left(d|Dw{|^2}+{\rm{|}}Dw{\rm{|}}\right)F^{ii}\right]^{2}}{2F^{ii}} -C(d|Dw|^2+|Dw|)(k-l)f\\ \ge&-Cd|Dw|^{4}F-C|Dw|^{2}F-Cd|Dw|^{2}-C|Dw|\,. \end{align*}$

将上式代入 (4.34) 式并且结合 (4.14) 式可得

$\begin{split}I \ge - Cd|Dw{|^2}F - C|Dw|F\,.\end{split}$

从而, 结合 (4.26)-(4.29) 式和 (4.36) 式可得

$\begin{split}0\ge \frac{{F^{ij}}{\Phi _{ij}} }{F}\ge C_2\left[h" - 2{(h')^2}\right]{\rm{|}}Dw{{\rm{|}}^2}- C_3d|Dw{|^2} - C|Dw|\,,\end{split}$

注意这里再次用到了 $F\ge C>0$.

若取 $h(t) = \frac{1}{4}\ln \frac{1}{{(3M - t)}}\,,$ $\mu$ 足够小使得 $C_3\mu \le C_2(h')^2$, 则 $h(t)$ 满足上述所有假设并且 $ C_2\left[h" - 2{(h')^2}\right]- C_3d \geq C_2\left[h" - 3{(h')^2}\right]=C_2(h')^2\,, $ 则有

$\begin{split}C_2{\left( {\frac{1}{{16{M}}}} \right)^2}{\rm{|}}Dw{{\rm{|}}^2} - C|Dw|\le 0.\end{split}$

因此我们在 $x_0$ 点得到 $|Dw|$ 的一致估计, 从而推得 $u$ 在 $\overline{\Omega}$ 上的梯度估计, 定理 4.1 得证.

参考文献

Caffarelli L, Nirenberg L, Spruck J.

The dirichlet problem for nonlinear second order elliptic equations I, Monge-Amp$\grave{\rm e}$re equations.

Comm Pure Appl Math, 1984, 37: 369-402

Caffarelli L, Nirenberg L, Spruck J.

The dirichlet problem for nonlinear second order elliptic equations III, Functions of the eigenvalues of the Hessian

Acta Math, 1985, 155: 261-301

Chen C Q.

The interior gradient estimate of Hessian quotient equations

J Differential Equations, 2015, 259(3): 1014-1023

[本文引用: 2]

Chen C Q, Zhang D K.

The Neumann problem of Hessian quotient equations

Bull Math Sci, 2021, 11: 1-26

[本文引用: 3]

Deng B, Ma X N.

Gradient estimates for the solutions of higher order curvature equations with prescribed contact angle

Math Eng, 2023, 5(6): 1-13

[本文引用: 1]

Gilbarg D, Trudinger N S. Elliptic Partial Differential Equations of Second Order. New York: Springer-Verlag, 1983

Ivochkina N.

Solutions of the Dirichlet problem for certain equations of Monge-Amp$\mathrm{\grave{e}}$re type

Mat Sb, 1985, 128: 403-415

Lieberman G. Second Order Parabolic Differential Equations. NJ: World Scientific Publishig, 1996

Lieberman G. Oblique Boundary Value Problems for Elliptic Equations. NJ: World Scientific Publishing, 2013

Lions P L, Trudinger N, Urbas J.

The Neumann problem for equations of Monge-Amp$\mathrm{\grave{e}}$re type

Comm Pure Appl Math, 1986, 39: 539-563

Li Y Y.

Interior gradient estimates for solutions of certain fully nonliear elliptic equations

J Differential Equations, 1991, 90: 172-185

[本文引用: 1]

Ma X N, Qiu G H.

The Neumann problem for Hessian equations

Comm Math Phys, 2019, 366: 1-28

[本文引用: 1]

Trudinger N S.

On degenerate fully nonlinear elliptic equations in balls

Bull Austral Math Soc, 1987, 35: 299-307

[本文引用: 1]

Trudinger N S.

On the Dirichlet problem for Hessian equations

Acta Math, 1995, 175: 151-164

[本文引用: 1]

Urbas J.

Nonlinear oblique boundary value problems for Hessian equations in two dimensions

Ann Inst H Poincar$\mathrm{\acute{e}}$ C Anal Non Lin$\mathrm{\acute{e}}$aire, 1995, 12(5): 507-575

Urbas J.

Nonlinear oblique boundary value problems for two dimensional curvature equations

Adv Differential Equations, 1996, 1: 301-336

Urbas J.

Oblique boundary value problems for equations of Monge-Amp$\mathrm{\grave{e}}$re type

Calc Var Partial Differential Equations, 1998, 7(1): 19-39

Wang P H.

Gradient estimate of the solutions to Hessian equations with oblique boundary value

Adv Nonlinear Stud, 2022, 22(1): 469-483

[本文引用: 5]

Wang X J.

The $k$-Hessian equation

Geometric Analysis 2009: 177-252

[本文引用: 2]

/