数学物理学报(英文版) ›› 2025, Vol. 45 ›› Issue (5): 1942-1960.doi: 10.1007/s10473-025-0509-8

• • 上一篇    下一篇

DIRICHLET BOUNDARY VALUE PROBLEM FOR FRACTIONAL DEGENERATE ELLIPTIC OPERATOR ON CARNOT GROUPS

Hua CHEN*, Yunlu FAN   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
  • 收稿日期:2024-04-10 修回日期:2025-03-04 出版日期:2025-09-25 发布日期:2025-10-14

DIRICHLET BOUNDARY VALUE PROBLEM FOR FRACTIONAL DEGENERATE ELLIPTIC OPERATOR ON CARNOT GROUPS

Hua CHEN*, Yunlu FAN   

  1. School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China
  • Received:2024-04-10 Revised:2025-03-04 Online:2025-09-25 Published:2025-10-14
  • Contact: *Hua Chen, E-mail: chenhua@whu.edu.cn
  • About author:Yunlu Fan, E-mail: yunlufan@whu.edu.cn
  • Supported by:
    Chen's research was supported by the NSFC (12131017, 12221001) and the National Key R&D Program of China (2022YFA1005602).

摘要: In this paper, we investigate a Dirichlet boundary value problem for a class of fractional degenerate elliptic equations on homogeneous Carnot groups $\mathbb{G}=(\mathbb{R}^n ,\circ)$, namely $$\begin{equation*} \left\{ \begin{array}{cc} (-\triangle_{\mathbb{G}})^s u=f(x,u)+g(x,u) & \mbox{in} \Omega; \\[2mm] u\in {\cal{H}}_0^s(\Omega), \end{array} \right. \end{equation*}$$ where $s\in(0,1)$, $\Omega\subset\mathbb{G}$ is a bounded open domain, $(-\Delta_{\mathbb{G}} )^s$ is the fractional sub-Laplacian, ${\cal{H}}_0^s (\Omega)$ denotes the fractional Sobolev space, $f(x,u)\in C(\overline{\Omega}\times\mathbb{R}), g(x,u)$ is a Carathéodory function on $\Omega\times\mathbb{R}$. Using perturbation methods and Morse index estimates in conjunction with fractional Dirichlet eigenvalue estimates, we establish the existence of multiple solutions to the problem.

关键词: Carnot group, fractional sub-Laplacian, perturbation methods, fractional Dirichlet eigenvalue, Morse index

Abstract: In this paper, we investigate a Dirichlet boundary value problem for a class of fractional degenerate elliptic equations on homogeneous Carnot groups $\mathbb{G}=(\mathbb{R}^n ,\circ)$, namely $$\begin{equation*} \left\{ \begin{array}{cc} (-\triangle_{\mathbb{G}})^s u=f(x,u)+g(x,u) & \mbox{in} \Omega; \\[2mm] u\in {\cal{H}}_0^s(\Omega), \end{array} \right. \end{equation*}$$ where $s\in(0,1)$, $\Omega\subset\mathbb{G}$ is a bounded open domain, $(-\Delta_{\mathbb{G}} )^s$ is the fractional sub-Laplacian, ${\cal{H}}_0^s (\Omega)$ denotes the fractional Sobolev space, $f(x,u)\in C(\overline{\Omega}\times\mathbb{R}), g(x,u)$ is a Carathéodory function on $\Omega\times\mathbb{R}$. Using perturbation methods and Morse index estimates in conjunction with fractional Dirichlet eigenvalue estimates, we establish the existence of multiple solutions to the problem.

Key words: Carnot group, fractional sub-Laplacian, perturbation methods, fractional Dirichlet eigenvalue, Morse index

中图分类号: 

  • 35A15