[1] Bahri A, Lions P L. Morse index of some min-max critical points. I. Application to multiplicity results. Comm Pure Appl Math, 1988, 41(8): 1027-1037 [2] Bertoin J.Lévy Processes. Cambridge: Cambridge University Press, 1996 [3] Bonfiglioli A, Lanconelli E, Uguzzoni F.Stratified Lie Groups and Potential Theory for Their Sub-Laplacians. Berlin: Springer, 2007 [4] Cabré X, Sire Y. Nonlinear equations for fractional Laplacians, I: Regularity, maximum principles,Hamiltonian estimates. Ann Inst H Poincaré Anal Non Linéaire, 2014, 31(1): 23-53 [5] Cabré X, Sire Y. Nonlinear equations for fractional Laplacians II: Existence, uniqueness,qualitative properties of solutions. Trans Amer Math Soc, 2015, 367(2): 911-941 [6] Caffarelli L A, Roquejoffre J M, Sire Y. Variational problems with free boundaries for the fractional Laplacian. J Eur Math Soc, 2010, 12(5): 1151-1179 [7] Caffarelli L A, Salsa S, Silvestre L. Regularity estimates for the solution and the free boundary of the obstacle problem for the fractional Laplacian. Invent Math, 2008, 171: 425-461 [8] Chen H, Chen H G, Li J N, Liao X. Multiplicity of solutions for the semilinear subelliptic Dirichlet problem. Sci China Math, 2024, 67: 475-504 [9] Chen H, Chen H G, Li J N. Weyl's law and eigenvalue estimates for fractional sub-Laplacian operators on Carnot groups.2024, preprint [10] Dugundji J. An extension of Tietze's theorem. Pac J Math, 1951, 1: 353-367 [11] Folland G B. Subelliptic estimates and function spaces on nilpotent Lie groups. Ark Mat, 1975, 13(1/2): 161-207 [12] Ghosh S, Kumar V, Ruzhansky M. Compact embeddings, eigenvalue problems,subelliptic Brezis-Nirenberg equations involving singularity on stratified Lie groups. Math Ann, 2024, 388: 4201-4249 [13] Kristály A, Varga C. Multiple solutions for elliptic problems with singular and sublinear potentials. Proc Amer Math Soc, 2007, 135(7): 2121-2126 [14] Lazer A C, Solimini S. Nontrivial solutions of operator equations and Morse indices of critical points of min-max type. Nonlinear Anal: Theory, Methods Appl, 1988, 12(8): 761-775 [15] Levin D, Solomyak M. The Rozenblum-Lieb-Cwikel inequality for Markov generators. J d'Analyse Math, 1997, 71(1): 173-193 [16] Liu X, Jia M, Ge W. Multiple solutions of a $p$-Laplacian model involving a fractional derivative. Adv Differ Equ, 2013, 2013: 1-12 [17] Mitchell J. On Carnot-Carathéodory metrics. J Differ Geom, 1985, 21(1): 35-45 [18] Rabinowitz P H. Multiple critical points of perturbed symmetric functionals. Trans Amer Math Soc, 1982, 272(2): 753-769 [19] Struwe M. Infinitely many critical points for functionals which are not even and applications to superlinear boundary value problems. Manuscr Math, 1980, 32(3/4): 335-364 [20] Tanaka K. Morse indices at critical points related to the symmetric mountain pass theorem and applications. Comm Partial Differ Equ, 1989, 14(1): 99-128 [21] Teng K. Multiple solutions for a class of fractional Schrödinger equations in $\mathbb{R}^N$. Nonlinear Anal: Real World Appl, 2015, 21: 76-86 |