|   [1]  Abeyratne R,  Knowles J K. Kinetic relations and the propagation of phase boundaries in solids. Arch Rational Mech Anal, 1991, 114:  119--154 
[2]  Abeyratne R, Knowles J K. Implications of viscosity and strain-gradient effects for the kinetics of propagating phase boundaries in solids. 
 SIAM J Appl Math, 1991, 51: 1205--1221 
[3]  Avezedo A,  Marchesin D, Plohr B J, Zumbrun K. Non-uniqueness of solutions of Riemann problems caused by 2-cycles of shock saves//Proc of Fifth International Conf on Hyperbolic Equations.  Singapore: World Scientific, 1996: 43--51 
[4]  Bertozzi A, Munch A, Shearer M. Undercompressive shocks in thin film flows. Phys D, 1999, 134: 431--464 
[5]  Bertozzi A, Shearer M. Existence of undercompressive traveling waves in thin film equations. SIAM J Math Anal, 2000, 32: 194--213 
[6]  Biskamp D. Nonlinear magnetohydrodynamics, Cambridge monographs on plasma physics. Cambridge Univ Press, 1993 
[7]  Brio M, Hunter J. Rotationally invariant hyperbolic waves. Comm Pure Appl Math, 1990, 43: 1037--1053 
[8]  Chalons C, LeFloch P G. A fully discrete scheme for diffusive-dispersive conservation laws. Numerische Math, 2001, 89:  493--509 
[9]  Chalons C, LeFloch P G. High-order entropy conservative schemes and kinetic relations for van der Waals fluids. J Comput Phys, 2001, 167:  1--23 
[10]  Cohen R H, Kulsrud R M. Non-linear evolution of quasi-parallel propagating hydro-magnetic waves. Phys Fluid, 1974, 17:  2215--2225 
[11]  Fan H T,  Slemrod M. The Riemann problem for systems of conservation laws of mixed type//Shock Induced Transitions and Phase Structures in General Media. IMA Vol  Math Appl 52. New York:  Springer-Verlag, 1993: 61--91 
[12]  Fjordholm U S,  Mishra S, Tadmor E. Energy preserving and energy stable schemes for the shallow water equations//Cucker F,  Pinkus A, Todd M, eds. Foundations  of Computational Mathematics, Hong Kong 2008. London Math Soc Lecture Notes Ser 363. London Math Soc,  2009: 93--139 
[13]  Freist\"uhler H. Dynamical stability and vanishing viscosity: a case study of a non-strictly hyperbolic system of conservation laws. Comm Pure Appl Math, 1992, 45: 561--582 
[14]  Freist\"uhler H. Stability of nonclassical shock waves//Proc of Fifth International Conference on Hyperbolic Equations. Singapore: World Scientific, 1996: 120--129 
[15]  Freistuhler H, Pitman E B. A numerical study of a rotationally degenerate hyperbolic system, Part 1: The Riemann problem. J Comput Phys, 1992, 100:  306--321 
[16]  Hayes B T, LeFloch P G. Nonclassical shocks and kinetic relations: Scalar conservation laws.  Arch Rational Mech Anal, 1997, 139:  1--56 
[17]  Hayes B T, LeFloch P G. Nonclassical shocks and kinetic relations: Finite difference schemes. SIAM J Num Anal, 1998, 35: 2169--2194 
[18]  Hayes B T, LeFloch P G. Nonclassical shocks and kinetic relations: Strictly hyperbolic systems. SIAM J Math Anal,  2000, 31: 941--991 
[19]  Jacobs D,  McKinney W R, Shearer M. Traveling wave solutions of a modified Korteweg De-Vries equation. J Diff Eqns, 1995, 116:  448--467 
[20]  Keyfitz B, Kranzer H. A system of nonstrictly hyperbolic conservation laws arising in elasticity theory. Arch Rational Mech Anal, 1980, 72: 219--241 
[21]  Lax P D.  Hyperbolic systems of conservation laws, II. Comm Pure Appl Math, 1957, 10:  537--566 
[22]  Lax P D. Hyperbolic systems of conservation laws and the mathematical theory of shock waves//Regional Confer Series in Appl Math 11.  Philadelphia: SIAM, 1973 
[23]  LeFloch P G. Propagating phase boundaries: formulation of the problem and existence via the Glimm scheme. Arch Rational Mech Anal, 1993, 123:  153--197 
[24]  LeFloch P G. An introduction to nonclassical shocks of systems of conservation laws//International School on Hyperbolic Problems, Freiburg, Germany, Oct 97. Kroner D, Ohlberger M, Rohde C, eds. Lect Notes Comput Eng, Vol 5. Springer-Verlag, 1999: 28--72 
[25]  LeFloch P G. Hyperbolic Systems of Conservation Laws: The Theory of Classical and Nonclassical Shock Waves. Lectures in Mathematics, ETH Zurich. Birkh\"auser, 2002 
[26]  LeFloch P G. Kinetic relations for undercompressive shock waves. Physical, mathematical, and numerical issues. Centre for Advanced Study of the Norwegian Academy of Science and Letters. Holden H,  Karlsen K, ed. 2010 
[27]  LeFloch P G, Mercier J M, Rohde C. Fully discrete entropy conservative schemes of arbitrary order. SIAM J Numer Anal,  2002, 40:  1968--1992 
[28]  LeFloch P G,  Mohammadian M.  Why many theories of shock waves are necessary. Kinetic functions, equivalent equations and fourth-order models. J Comput Phys, 2008, 27:  4162--4189 
[29]  LeFloch P G, Rohde C. High order schemes, entropy inequalities and nonclassical shocks. SIAM J Numer Anal, 2000, 37: 2023--2060 
[30]  LeFloch  P G, Shearer M. Nonclassical Riemann solvers with nucleation. Proc Royal Soc Edinburgh,  2004, 134A:941-964 
[31]  Levy R, Shearer M. Comparison of two dynamic contact line models for driven thin liquid films. European J Appl Math, 2004, 15: 625--642 
[32]  Liu T P. The Riemann problem for general 2×2 conservation laws. Trans Amer Math Soc, 1974, 199: 89--112 
[33]  LeVeque R J. Finite Volume Methods for Hyperbolic Problems. Cambridge: Cambridge Univ Press, 2002 
[34]  Myong R S,  Roe P L. Shock waves and rarefaction waves in magnetohydrodynamics, Part 1. A model system. J Plasma Phys, 1997, 58:  485--519 
[35]  Roe P L, Balsara D S. Note on the eigensystem of magnetohydrodynamics. SIAM J Appl Math, 1996, 56:  57--67 
[36]  Slemrod M. Admissibility criteria for propagating phase boundaries in a van der Waals fluid. Arch Rational Mech Anal, 1983, 81: 301--315 
[37]  Slemrod M. A limiting viscosity approach to the Riemann problem for materials exhibiting change of phase. Arch Rational Mech Anal, 1989, 105:  327--365 
[38]  Tadmor E. The numerical viscosity of entropy stable schemes for systems of conservation laws, I. Math Comp, 1987, 49:  91--103 
[39]  Tadmor E. Entropy stability theory for difference approximations of nonlinear conservation laws and related time-dependent problems. 
Acta Numerica, 2003, 12: 451--512 
[40]  Torrilhon M. Uniqueness conditions for Riemann problems of ideal magneto-hydrodynamics. J Plasma Phys, 2003, 69: 253--276 
[41]  Torrilhon M. Non-uniform convergence of finite volume schemes for Riemann problems of ideal magnetohydrodynamics. J Comput Phys,  2003, 192:  73--94 
[42]  Truskinovsky J. Dynamics of non-equilibrium phase boundaries in a heat conducting nonlinear elastic medium. J Appl Math and Mech (PMM), 1987, 51: 777--784 
[43]  Truskinovsky  L. Kinks versus shocks//Fosdick R,  Dunn E,  Slemrod M, ed. Shock Induced Transitions and Phase Structures in General Media. IMA Vol Math Appl,  52. New York: Springer-Verlag, 1993: 185--229 
[44]  Wu C C, Kennel C F. The small amplitude magnetohydrodynamic Riemann problem. Phys Fluids B, 1993, 5: 2877--2886 
   |