|    
[1]  MacGregor T H.  Functions whose derivative has a positive real part. Trans Amer Math Soc, 1962, 104:  532--537 
 
[2]  Caplinger T R,  Causey W M.  A class of univalent functions. Proc Amer Math Soc, 1973, 39:  357--361 
 
[3]  Padmanabhan K S, On a certain class of functions whose derivatives have a positive real part in the unit disc.  Ann Polon Math, 1970/1971,  23:  73--81 
 
[4]  Juneja O P, Mogra M L. A class of univalent functions. Bull Sci Math 2 S\'{e}rie, 1979, 103:  435--447 
 
[5]  Selvaraj C.  A subclass of close-to-convex functions. Southeast Asian Bulletin of Mathematics, 2004, 28: 113--123 
 
[6]  Duren P. Univalent Functions.  New York: Springer-Verlag, 1983 
 
[7]  Hallenbeck D J, MacGregor T H.  Linear Problems and Convexity Techniques in Geometric Function Theory. Boston: Pitman Advanced Publishing Program, 1984 
 
[8]  Robertson M S. On the theory of univalent functions. Ann Math, 1936, 37: 374--408 
 
[9]  Janowski W.  Some extremal problems for certain families of analytic functions. Ann Polon Math, 1973, 28:  297--326 
 
[10]  Goodman A W. Univalent Functions,  Vol II. Tampa, FL: Mariner Publishing Co Inc, 1983 
 
[11]  Parvatham R, Shanmugham T N. On analytic functions with reference to an integral operator. Bull Austral Math Soc, 1983, 28:  207--215 
 
[12]  Aghalary R, Kulkarni S R. Some properties of the integral operators in univalent function. Studia Univ Babes-Bolyai Mathematica, 2001, 46(1): 3--9
  |