Acta mathematica scientia,Series B ›› 2022, Vol. 42 ›› Issue (2): 511-520.doi: 10.1007/s10473-022-0206-9
• Articles • Previous Articles Next Articles
Feng QI1,2
Received:
2020-02-24
Revised:
2021-07-22
Online:
2022-04-25
Published:
2022-04-22
Supported by:
CLC Number:
Feng QI. COMPLETE MONOTONICITY FOR A NEW RATIO OF FINITELY MANY GAMMA FUNCTIONS[J].Acta mathematica scientia,Series B, 2022, 42(2): 511-520.
[1] Abramowitz M, Stegun I A. Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series 55, 10th printing. Dover New York and Washington:Publications, 1972 [2] Alzer H. Complete monotonicity of a function related to the binomial probability. J Math Anal Appl, 2018, 459(1):10-15. https://doi.org/10.1016/j.jmaa.2017.10.077 [3] Alzer H, Berg C. Some classes of completely monotonic functions. II. Ramanujan J, 2006, 11(2):225-248. https://doi.org/10.1007/s11139-006-6510-5 [4] Bullen P S. Handbook of Means and Their Inequalities. Mathematics and its Applications 560. Dordrecht:Kluwer Academic Publishers Group, 2003. https://doi.org/10.1007/978-94-017-0399-4 [5] Cringanu J. Inequalities associated with ratios of gamma functions. Bull Aust Math Soc, 2018, 97(3):453-458. https://doi.org/10.1017/S0004972718000138 [6] Guo B-N, Qi F. On complete monotonicity of linear combination of finite psi functions. Commun Korean Math Soc, 2019, 34(4):1223-1228. https://doi.org/10.4134/CKMS.c180430 [7] Guo B-N, Qi F. Properties and applications of a function involving exponential functions. Commun Pure Appl Anal, 2009, 8(4):1231-1249. https://doi.org/10.3934/cpaa.2009.8.1231 [8] Guo B-N, Qi F. Two new proofs of the complete monotonicity of a function involving the psi function. Bull Korean Math Soc, 2010, 47(1):103-111. https://doi.org/10.4134/bkms.2010.47.1.103 [9] Guo B-N, Qi F, Zhao J-L, Luo Q-M. Sharp inequalities for polygamma functions. Math Slovaca, 2015, 65(1):103-120 https://doi.org/10.1515/ms-2015-0010. [10] Gurland J. An inequality satisfied by the gamma function. Skand Aktuarietidskr, 1956, 39:171-172. https://doi.org/10.1080/03461238.1956.10414947 [11] Leblanc A, Johnson B C. A Family of Inequalities Related to Binomial Probabilities. Department of Statistics, University of Manitoba. Tech Report, 2006-03 [12] Leblanc A, Johnson B C. On a uniformly integrable family of polynomials defined on the unit interval. J Inequal Pure Appl Math, 2007, 8(3):Article 67, 5 pages. https://www.emis.de/journals/JIPAM/article878.html [13] Lü Y-P, Sun T-C, Chu Y-M. Necessary and sufficient conditions for a class of functions and their reciprocals to be logarithmically completely monotonic. J Inequal Appl, 2011(Paper No 36):8 pages. https://doi.org/10.1186/1029-242X-2011-36 [14] Mitrinović D S. Analytic Inequalities. New York-Berlin:Springer-Verlag, 1970, Band 165 [15] Mitrinović D S, Pečarić J E, Fink A M. Classical and New Inequalities in Analysis. Kluwer Academic Publishers, 1993. https://doi.org/10.1007/978-94-017-1043-5 [16] Olver F W J, Lozier D W, Boisvert R F, Clark C W. NIST Handbook of Mathematical Functions. New York:Cambridge University Press, 2010. http://dlmf.nist.gov/ [17] Ouimet F. Complete monotonicity of a ratio of gamma functions and some combinatorial inequalities for multinomial coefficients. arXiv, 2019. https://arxiv.org/abs/1907.05262 [18] Ouimet F. Complete monotonicity of multinomial probabilities and its application to Bernstein estimators on the simplex. J Math Anal Appl, 2018, 466(2):1609-1617. https://doi.org/10.1016/j.jmaa.2018.06.049 [19] Qi F. A double inequality for the ratio of two non-zero neighbouring Bernoulli numbers. J Comput Appl Math, 2019, 351:1-5. https://doi.org/10.1016/j.cam.2018.10.049 [20] Qi F. A logarithmically completely monotonic function involving the q-gamma function. J Nonlinear Convex Anal, 2022. https://hal.archives-ouvertes.fr/hal-01803352v1 [21] Qi F. Bounds for the ratio of two gamma functions. J Inequal Appl, 2010, 2010(Article ID 493058):84 pages. https://doi.org/10.1155/2010/493058 [22] Qi F. Bounds for the ratio of two gamma functions:from Gautschi's and Kershaw's inequalities to complete monotonicity. Turkish J Anal Number Theory, 2014, 2(5):152-164. https://doi.org/10.12691/tjant-2-5-1 [23] Qi F. Complete monotonicity for a new ratio of finite many gamma functions. HAL, 2020. https://hal.archives-ouvertes.fr/hal-02511909v1 [24] Qi F. Complete monotonicity of functions involving the q-trigamma and q-tetragamma functions. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2015, 109(2):419-429. https://doi.org/10.1007/s13398- 014-0193-3 [25] Qi F. Limit formulas for ratios between derivatives of the gamma and digamma functions at their singularities. Filomat, 2013, 27(4):601-604. https://doi.org/10.2298/FIL1304601Q [26] Qi F. Notes on a double inequality for ratios of any two neighbouring non-zero Bernoulli numbers. Turkish J Anal Number Theory, 2018, 6(5):129-131. https://doi.org/10.12691/tjant-6-5-1 [27] Qi F, Agarwal R P. On complete monotonicity for several classes of functions related to ratios of gamma functions. J Inequal Appl, 2019, 2019(Paper No 36):42 pages. https://doi.org/10.1186/s13660-019-1976-z [28] Qi F, Chapman R J. Two closed forms for the Bernoulli polynomials. J Number Theory, 2016, 159:89-100. https://doi.org/10.1016/j.jnt.2015.07.021 [29] Qi F, Guo B-N. Complete monotonicity of divided differences of the di- and tri-gamma functions with applications. Georgian Math J, 2016, 23(2):279-291. https://doi.org/10.1515/gmj-2016-0004 [30] Qi F, Guo B-N. From inequalities involving exponential functions and sums to logarithmically complete monotonicity of ratios of gamma functions. J Math Anal Appl, 2021, 493(1):Article 124478, 19 pages. https://doi.org/10.1016/j.jmaa.2020.124478 [31] Qi F, Guo B-N. Integral representations and complete monotonicity of remainders of the Binet and Stirling formulas for the gamma function. Rev R Acad Cienc Exactas Fís Nat Ser A Math RACSAM, 2017, 111(2):425-434. https://doi.org/10.1007/s13398-016-0302-6 [32] Qi F, Guo B-N, Debnath L. A lower bound for ratio of power means. Int J Math Math Sci, 2004, 2014(1/4):49-53. https://doi.org/10.1155/S0161171204208158 [33] Qi F, Li W -H. Integral representations and properties of some functions involving the logarithmic function. Filomat, 2016, 30(7):1659-1674. https://doi.org/10.2298/FIL1607659Q [34] Qi F, Li W-H, Yu S-B, Du X-Y, Guo B-N. A ratio of finitely many gamma functions and its properties with applications. Rev R Acad Cienc Exactas Fís Nat Ser A Math RACSAM, 2021, 115(2):Paper No 39, 14 pages. https://doi.org/10.1007/s13398-020-00988-z [35] Qi F, Lim D. Monotonicity properties for a ratio of finite many gamma functions. Adv Difference Equ, 2020, 2020(Paper No 193):9 pages. https://doi.org/10.1186/s13662-020-02655-4 [36] Qi F, Liu A-Q. Completely monotonic degrees for a difference between the logarithmic and psi functions. J Comput Appl Math, 2019, 361:366-371. https://doi.org/10.1016/j.cam.2019.05.001 [37] Qi F, Luo Q-M. Bounds for the ratio of two gamma functions-From Wendel's and related inequalities to logarithmically completely monotonic functions. Banach J Math Anal, 2012, 6(2):132-158. https://doi.org/10.15352/bjma/1342210165 [38] Qi F, Luo Q-M. Bounds for the ratio of two gamma functions:from Wendel's asymptotic relation to Elezović-Giordano-Pečarić's theorem. J Inequal Appl, 2013, 2013(Paper No 542):20 pages. https://doi.org/10.1186/1029-242X-2013-542 [39] Qi F, Mei J-Q, Xia D-F, Xu S-L. New proofs of weighted power mean inequalities and monotonicity for generalized weighted mean values. Math Inequal Appl, 2000, 3(3):377-383. https://doi.org/10.7153/mia- 03-38 [40] Qi F, Niu D-W, Lim D, Guo B-N. Some logarithmically completely monotonic functions and inequalities for multinomial coefficients and multivariate beta functions. Appl Anal Discrete Math, 2020, 14(2):512-527. https://doi.org/10.2298/AADM191111033Q [41] Schilling R L, Song R, Vondraček Z. Bernstein Functions. 2nd ed. de Gruyter Studies in Mathematics 37. Berlin, Germany:Walter de Gruyter, 2012. https://doi.org/10.1515/9783110269338 [42] Salem A, Kamel E S. Some completely monotonic functions associated with the q-gamma and the q-polygamma functions. Acta Math Sci, 2015, 35B(5):1214-1224. https://doi.org/10.1016/S0252- 9602(15)30050-3 [43] Shen J-M, Yang Z-H, Qian W-M, Zhang W, Chu Y-M. Sharp rational bounds for the gamma function. Math Inequal Appl, 2020, 23(3):843-853. https://doi.org/10.7153/mia-2020-23-68 [44] Shuang Y, Guo B-N, Qi F. Logarithmic convexity and increasing property of the Bernoulli numbers and their ratios. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2021, 115(3):Paper No 135, 12 pages. https://doi.org/10.1007/s13398-021-01071-x [45] Temme N M. Special Functions:An Introduction to Classical Functions of Mathematical Physics, A WileyInterscience Publication. New York:John Wiley & Sons, Inc, 1996. https://doi.org/10.1002/9781118032572 [46] Tian J-F, Yang Z-H. Asymptotic expansions of Gurland's ratio and sharp bounds for their remainders. J Math Anal Appl, 2021, 493(2):Paper No 124545, 19 pp. https://doi.org/10.1016/j.jmaa.2020.124545 [47] Widder D V. The Laplace Transform. Princeton:Princeton University Press, 1946 [48] Yang Z-H, Qian W-M, Chu Y-M, Zhang W. On rational bounds for the gamma function, J Inequal Appl, 2017, 2017(Paper No 210):17 pages. https://doi.org/10.1186/s13660-017-1484-y [49] Yang Z-H, Tian J-F. A class of completely mixed monotonic functions involving the gamma function with applications. Proc Amer Math Soc, 2018, 146(11):4707-4721. https://doi.org/10.1090/proc/14199 [50] Yang Z-H, Tian J-F. Sharp bounds for the ratio of two zeta functions. J Comput Appl Math, 2020, 364(Paper No 112359):14 pages. https://doi.org/10.1016/j.cam.2019.112359 [51] Yang Z-H, Xi B-Y, Zheng S-Z. Some properties of the generalized Gaussian ratio and their applications. Math Inequal Appl, 2020, 23(1):177-200. https://doi.org/10.7153/mia-2020-23-15 [52] Yang Z-H, Zhang W, Chu Y-M. Sharp Gautschi inequality for parameter 0< p < 1 with applications. Math Inequal Appl, 2017, 20(4):1107-1120. https://doi.org/10.7153/mia-2017-20-71 [53] Yang Z-H, Zheng S-Z. Complete monotonicity and inequalites involving Gurland's ratios of gamma functions. Math Inequal Appl, 2019, 22(1):97-109. https://doi.org/10.7153/mia-2019-22-07 [54] Yin L, Huang L-G. Limit formulas related to the p-gamma and p-polygamma functions at their singularities. Filomat, 2015, 29(7):1501-1505. https://doi.org/10.2298/FIL1507501Y [55] Zhao T-H, Chu Y-M, Wang H. Logarithmically complete monotonicity properties relating to the gamma function. Abstr Appl Anal, 2011, 2011(Art ID 896483):13 pages. https://doi.org/10.1155/2011/896483 [56] Zhu L. New bounds for the ratio of two adjacent even-indexed Bernoulli numbers. Rev R Acad Cienc Exactas Fís Nat Ser A Mat RACSAM, 2020, 114(2):Paper No 83, 13 pages. https://doi.org/10.1007/s13398-020- 00814-6 |
[1] | Jing Zhang, Zechun Hu, Wei Sun. ON THE MEASURE CONCENTRATION OF INFINITELY DIVISIBLE DISTRIBUTIONS [J]. Acta mathematica scientia,Series B, 2025, 45(2): 473-492. |
[2] | Yuqi ZHOU, Chunna ZENG. ON SOME SHARP CHERNOFF TYPE INEQUALITIES [J]. Acta mathematica scientia,Series B, 2025, 45(2): 540-552. |
[3] | Zhipeng Liu, Shanming Ji. CLASSIFICATION OF SELF-SIMILAR SOLUTIONS OF THE DEGENERATE POLYTROPIC FILTRATION EQUATIONS [J]. Acta mathematica scientia,Series B, 2025, 45(2): 615-635. |
[4] | Deyi LI, Lei MA, Chunna ZENG. NOTES ON THE LOG-MINKOWSKI INEQUALITY OF CURVATURE ENTROPY [J]. Acta mathematica scientia,Series B, 2025, 45(1): 16-26. |
[5] | Denghui Wu, Jiazu Zhou. MODIFIED BRASCAMP-LIEB INEQUALITIES AND LOG-SOBOLEV INEQUALITIES FOR ONE-DIMENSIONAL LOG-CONCAVE MEASURE [J]. Acta mathematica scientia,Series B, 2025, 45(1): 104-117. |
[6] | Xiao Li, Jiazu Zhou. A FUNCTIONAL ORLICZ BUSEMANN-PETTY CENTROID INEQUALITY FOR LOG-CONCAVE FUNCTIONS [J]. Acta mathematica scientia,Series B, 2025, 45(1): 52-71. |
[7] | Andrea Colesanti. LOG-CONCAVITY OF THE FIRST DIRICHLET EIGENFUNCTION OF SOME ELLIPTIC DIFFERENTIAL OPERATORS AND CONVEXITY INEQUALITIES FOR THE RELEVANT EIGENVALUE [J]. Acta mathematica scientia,Series B, 2025, 45(1): 143-152. |
[8] | Gaoyong Zhang. ISOPERIMETRIC INEQUALITIES FOR INTEGRAL GEOMETRIC INVARIANTS OF RANDOM LINES [J]. Acta mathematica scientia,Series B, 2025, 45(1): 189-199. |
[9] | Jiayu Li, Shujing Pan. A SURVEY ON THE ISOPERIMETRIC PROBLEM IN RIEMANNIAN MANIFOLDS [J]. Acta mathematica scientia,Series B, 2025, 45(1): 228-236. |
[10] | Haizhong Li, Yao Wan. STABILITY OF THE ISOPERIMETRIC INEQUALITY IN HYPERBOLIC PLANE [J]. Acta mathematica scientia,Series B, 2025, 45(1): 215-227. |
[11] | Youmin CHEN, Lei LIU, Miaomiao ZHU. BUBBLING ANALYSIS FOR A NONLINEAR DIRAC EQUATION ON SURFACES [J]. Acta mathematica scientia,Series B, 2024, 44(6): 2073-2082. |
[12] | Yi QI, Yan WU. ON $Q_K(p)$-TEICHMÜULLER SPACES [J]. Acta mathematica scientia,Series B, 2024, 44(6): 2283-2295. |
[13] | Zhongmin Qian, Xingcheng Xu. LÉVY AREA ANALYSIS AND PARAMETER ESTIMATION FOR FOU PROCESSES VIA NON-GEOMETRIC ROUGH PATH THEORY* [J]. Acta mathematica scientia,Series B, 2024, 44(5): 1609-1638. |
[14] | Bin Chen, Yongshuai Gao, Yujin Guo, Yue Wu. MINIMIZERS OF $L^2$-SUBCRITICAL VARIATIONAL PROBLEMS WITH SPATIALLY DECAYING NONLINEARITIES IN BOUNDED DOMAINS [J]. Acta mathematica scientia,Series B, 2024, 44(3): 984-996. |
[15] | Yonghong YAO, Abubakar ADAMU, Yekini SHEHU. STRONGLY CONVERGENT INERTIAL FORWARD-BACKWARD-FORWARD ALGORITHM WITHOUT ON-LINE RULE FOR VARIATIONAL INEQUALITIES [J]. Acta mathematica scientia,Series B, 2024, 44(2): 551-566. |
|