[1] Debouard A, Hayashi N, Saut J C. Global existence of small solutions to a relativistic nonlinear schrodingerequation. Comm Math Phys, 1997, 189:73-105 [2] Colin M, Jeanjian L. Solutions for a quasilinear Schrödinger equations:A dual approach. Nonlinear Anal TMA, 2004, 56:213-226 [3] Cheng Y K, Yang J. Positive solution to a class of relatistic nonlinear Schrödinger equation. J Math Anal Appl, 2014, 411:665-674 [4] Hasse R W. A general method for the solution of nonlinear soliton and kink Schrödinger equations. Z Phys, 1980, 37:83-87 [5] Jeanjean L, Tanaka K. A remark on least energy solutions in RN. Proc Amer Math Soc, 2003, 131:2399-2408 [6] Kelley P L. Self focusing of optical beams. Phys Rev Lett, 1965, 15:1005-1008 [7] Lions P L. The concentration compactness principle in the calculus of variations, The locally compact case, Part I and Ⅱ. Ann Inst H Poincaré Anal Non Lineairé, 1984, 1:109-145, 223-283 [8] Litvak A G, Sergeev A M. One dimensional collapse of plasma waves. JETP Lett, 1978, 27:517-520 [9] Liu J Q, Wang Z Q. Soliton solutions for quasilinear Schrödinger equations Ⅱ. J Differ Equa, 2003, 187:473-493 [10] Poppenberg M, Schmitt K, Wang Z Q. On the existence of soliton solutions to quasilinear Schrödinger equations. Calc Var Partial Differ Equa, 2002, 14(3):329-344 [11] Shen Y T, Guo X K. The positive solutions of degenerate variational problems and degenerate elliptic equations. Chinese J of Contemp Math, 1994, 14:157-165 [12] Shen Y T, Wang Y J. Soliton solutions for generalized quasilinear Schrödinger equations. Nonlinear Anal TMA, 2013, 80:194-201 [13] Wang Y J, Yao Y X. Standing waves for quasilinear Schrödinger equations. J Math Anal Appl, 2013, 400:305-310 [14] Yang J, Wang Y J, Ahamed A A. Soliton solutions for quasilinear Schrödinger equations. J Math Phys, 2013, 54:1-19 |