数学物理学报 ›› 2019, Vol. 39 ›› Issue (1): 49-58.
收稿日期:
2017-09-30
出版日期:
2019-02-26
发布日期:
2019-03-12
作者简介:
王春, E-mail:基金资助:
Received:
2017-09-30
Online:
2019-02-26
Published:
2019-03-12
Supported by:
摘要:
该文研究了一类分数阶微分系统的Hyers-Ulam-Rassias稳定性.主要应用Laplace变换方法证明了这类分数阶系统是Hyers-Ulam-Rassias稳定的.通过具体的例子说明了所得理论结果的有效性.
中图分类号:
王春. 一类分数阶系统的稳定性和Laplace变换[J]. 数学物理学报, 2019, 39(1): 49-58.
Chun Wang. Stability of Some Fractional Systems and Laplace Transform[J]. Acta mathematica scientia,Series A, 2019, 39(1): 49-58.
1 | András S , Mészáros A R . Ulam-Hyers stability of dynamic equations on time scales via Picard operators. Appl Math Comput, 2013, 219: 4853- 4864 |
2 |
Gejji V D , Babakhani A . Analysis of a system of fractional differential equations. J Math Anal Appl, 2004, 293: 511- 522
doi: 10.1016/j.jmaa.2004.01.013 |
3 | Gordji M E , Cho Y , Ghaemi M , Alizadeh B . Stability of the second order partial differential equations. J Inequal Appl, 2011, 81: 1- 10 |
4 |
Hegyi B , Jung S M . On the stability of Laplace's equation. Appl Math Lett, 2013, 26: 549- 552
doi: 10.1016/j.aml.2012.12.014 |
5 |
Jung S M . Hyers-Ulam stability of linear differential equations of first order. Appl Math Lett, 2004, 17: 1135- 1140
doi: 10.1016/j.aml.2003.11.004 |
6 |
Jung S M . Hyers-Ulam stability of linear differential equations of first order, Ⅲ. J Math Anal Appl, 2005, 311: 139- 146
doi: 10.1016/j.jmaa.2005.02.025 |
7 |
Jung S M . Hyers-Ulam stability of linear differential equations of first order, Ⅱ. Appl Math Lett, 2006, 19: 854- 858
doi: 10.1016/j.aml.2005.11.004 |
8 |
Jung S M . Hyers-Ulam stability of a system of first order linear differential equations with constant coefficients. J Math Anal Appl, 2006, 320: 549- 561
doi: 10.1016/j.jmaa.2005.07.032 |
9 | Kilbas A A , Srivastava H M , Trujillo J J . Theory and Applications of Fractional Differential Equations. Amsterdam: Elsevier, 2006 |
10 |
Li K , Peng J . Laplace transform and fractional differential equations. Appl Math Lett, 2011, 24: 2019- 2023
doi: 10.1016/j.aml.2011.05.035 |
11 |
Lungu N , Popa D . Hyers-Ulam stability of a first order partial differential equation. J Math Anal Appl, 2012, 385: 86- 91
doi: 10.1016/j.jmaa.2011.06.025 |
12 | Obloza M . Hyers stability of the linear differential equation. Rocznik Nauk-Dydakt Prace Mat, 1993, 13: 259- 270 |
13 | Obloza M . Connections between Hyers and Lyapunov stability of the ordinary differential equations. Rocznik Nauk-Dydakt Prace Mat, 1997, 14: 141- 146 |
14 | Podlubny I . Fractional Differential Equations. San Diego: Academic Press, 1999 |
15 |
Popa D , Raşa I . On the Hyers-Ulam stability of the linear differential equation. J Math Anal Appl, 2011, 381: 530- 537
doi: 10.1016/j.jmaa.2011.02.051 |
16 |
Rezaei H , Jung S M , Rassias T M . Laplace transform and Hyers-Ulam stability of linear differential equations. J Math Anal Appl, 2013, 403: 244- 251
doi: 10.1016/j.jmaa.2013.02.034 |
17 |
Shen Y , Chen W . Laplace transform method for the Ulam stability of linear fractional differential equations with constant coefficients. Mediterr J Math, 2017, 14: 1- 17
doi: 10.1007/s00009-016-0833-2 |
18 |
Wang J , Zhou Y . Mittag-Leffler-Ulam stabilities of fractional evolution equations. Appl Math Lett, 2012, 25: 723- 728
doi: 10.1016/j.aml.2011.10.009 |
19 |
Wang J , Li X . A uniform method to Ulam-Hyers stability for some linear fractional equations. Mediterr J Math, 2016, 13: 625- 635
doi: 10.1007/s00009-015-0523-5 |
20 | Wang C, Xu T Z. Hyers-Ulam stability of differentiation operator on Hilbert spaces of entire functions. J Funct Spaces, 2014, 2014: Article ID: 398673 |
21 |
Wang C , Xu T Z . Hyers-Ulam stability of fractional linear differential equations involving Caputo fractional derivatives. Appl Math, 2015, 60: 383- 393
doi: 10.1007/s10492-015-0102-x |
22 |
Wang C , Xu T Z . Hyers-Ulam stability of differential operators on reproducing kernel function spaces. Complex Anal Oper Theory, 2016, 10: 795- 813
doi: 10.1007/s11785-015-0486-3 |
23 |
Wang C , Xu T Z . Hyers-Ulam stability of a class of fractional linear differential equations. Kodai Math J, 2015, 38: 510- 520
doi: 10.2996/kmj/1446210592 |
24 | Wang C , Xu T Z . Stability of the nonlinear fractional differential equations with the right-sided RiemannLiouville fractional derivative. Discrete Contin Dyn Syst Ser S, 2017, 10: 505- 521 |
25 | Xu T Z , Wang C , Rassias T M . On the stability of multi-additive mappings in non-Archimedean normed spaces. J Comput Anal Appl, 2015, 18: 1102- 1110 |
26 |
Xu T Z . On the stability of multi-Jensen mappings in β-normed spaces. Appl Math Lett, 2012, 25: 1866- 1870
doi: 10.1016/j.aml.2012.02.049 |
27 |
王春, 许天周. 拟Banach空间上含参数的二次-可加混合型函数方程的解和Hyers-Ulam-Rassias稳定性. 数学物理学报, 2017, 37A (5): 846- 859
doi: 10.3969/j.issn.1003-3998.2017.05.006 |
Wang C , Xu T Z . Solution and Hyers-Ulam-Rassias stability of a mixed type quadratic-additive functional equation with a parameter in quasi-Banach spaces. Acta Math Sci, 2017, 37A (5): 846- 859
doi: 10.3969/j.issn.1003-3998.2017.05.006 |
[1] | 姚旺进, 张慧萍. 一类具有瞬时和非瞬时脉冲的 |
[2] | 张伟, 陈柯元, 毋祎, 倪晋波. 多项 Caputo 分数阶微分方程 Dirichlet 问题 Lyapunov 型不等式[J]. 数学物理学报, 2024, 44(6): 1433-1444. |
[3] | 宾茂君, 施翠云. 半线性Riemann-Liouville分数阶发展方程反馈时间最优控制[J]. 数学物理学报, 2024, 44(3): 687-698. |
[4] | 王文霞. 带有 $p$-Laplacian 算子的分数阶非线性积分边值问题的唯一正解与和算子方法[J]. 数学物理学报, 2023, 43(6): 1731-1743. |
[5] | 徐家发, 杨志春. 高阶Riemann-Liouville型分数阶脉冲微分方程积分边值问题的正解[J]. 数学物理学报, 2023, 43(1): 53-68. |
[6] | 韩晓玲,蔡蕙泽,杨虎军. 星图上非线性分数阶微分方程边值问题解的存在唯一性[J]. 数学物理学报, 2022, 42(1): 139-156. |
[7] | 王春,许天周. 一类广义分数阶系统的Hyers-Ulam-Rassias稳定性[J]. 数学物理学报, 2021, 41(6): 1791-1804. |
[8] | 张纪凤,张伟,倪晋波,任丹丹. 带p(t)-Laplacian算子的分数阶Langevin方程反周期边值问题解的存在性[J]. 数学物理学报, 2021, 41(4): 1024-1032. |
[9] | 任晶,翟成波. 基于变分法的回火分数阶脉冲微分系统分析[J]. 数学物理学报, 2021, 41(2): 415-426. |
[10] | 巩全壹,么焕民. 再生核移位勒让德基函数法求解分数阶微分方程[J]. 数学物理学报, 2020, 40(2): 441-451. |
[11] | 王春,许天周. 2-Banach空间上三次-四次混合型函数方程的Hyers-Ulam-Rassias稳定性[J]. 数学物理学报, 2020, 40(2): 352-368. |
[12] | 王惠文, 曾红娟, 李芳. 多基点分数阶微分方程脉冲边值问题解的存在性[J]. 数学物理学报, 2018, 38(4): 697-715. |
[13] | 王春, 许天周. 拟Banach空间上含参数的二次-可加混合型函数方程的解和Hyers-Ulam-Rassias稳定性[J]. 数学物理学报, 2017, 37(5): 846-859. |
[14] | Marko Kostić, 李成刚, 李淼. 抽象多项Riemann-Liouville分数阶微分方程[J]. 数学物理学报, 2016, 36(4): 601-622. |
[15] | 胡雷, 张淑琴, 侍爱玲. 分数阶微分方程耦合系统共振边值问题解的存在性[J]. 数学物理学报, 2014, 34(5): 1313-1326. |
|