| 1 | Alfvén H . Existence of electromagnetic-hydrodynamic waves. Nature, 1942, 150: 405- 406 |
| 2 | Brezis H , Mironescu P . Gagliardo-Nirenberg, composition and products in fractional Sobolev spaces. J Evol Equa, 2001, 1 (4): 387- 404 |
| 3 | Bahouri H , Chemin J Y , Danchin R . Fourier Analysis and Nonlinear Partial Differential Equations. Heidelberg: Springer, 2011 |
| 4 | Beale J T , Kato T , Majda A . Remarks on the breakdown of smooth solutions for the 3D Euler equations. Comm Math Phys, 1984, 94: 61- 66 |
| 5 | Cannone M , Chen Q , Miao C . A losing estimate for the Ideal MHD equations with application to Blow-up criterion. SIAM J Math Anal, 2007, 38: 1847- 1859 |
| 6 | Chen Q , Miao C , Zhang Z . The Beale-Kato-Majda criterion for the 3D magneto-hydrodynamics equations. Comm Math Phys, 2007, 275: 861- 872 |
| 7 | Chen Q , Miao C , Zhang Z . On the regularity criterion of weak solution for the 3D viscous magneto-hydrodynamics equations. Comm Math Phys, 2008, 284: 919- 930 |
| 8 | Chen Q , Miao C , Zhang Z . On the well-posedness of the ideal MHD equations in the Triebel-Lizorkin spaces. Arch Ration Mech Anal, 2010, 195 (2): 561- 578 |
| 9 | Caflisch R E , Klapper I , Steele G . Remarks on singularities, dimension and energy dissipation for ideal hydrodynamics and MHD. Commun Math Phys, 1997, 184: 443- 455 |
| 10 | Duvaut G , Lions J L . Inéquations en thermoélasticité et magnéto-hydrodynamique. Arch Rational Mech Anal, 1972, 46: 241- 279 |
| 11 | Furioli G , Lemarié-Rieusset P G , Terraneo E . Sur l'unicité dans ${L^3}({{mathbb{R}}^3})$ des solutions "mild" des équations de Navier-Stokes[On the uniqueness in ${L^3}({{mathbb{R}}^3})$ of mild solutions of the Navier-Stokes equations]. C R Acad Sci Paris Sér I Math, 1997, 325: 1253- 1256 |
| 12 | Hasegawa A . Self-organization processes in continuous media. Adv Phys, 1985, 34: 1- 42 |
| 13 | He C , Xin Z . On the regularity of weak solutions to the magnetohydrodynamic equations. J Differential Equations, 2005, 213: 235- 254 |
| 14 | He C , Xin Z . Partial regularity of suitable weak solutions to the incompressible magnetohydrodynamic equations. J Funct Anal, 2005, 227: 113- 152 |
| 15 | Hajaiej H, Molinet L, Ozawa T, Wang B. Necessary and sufficient conditions for the fractional GagliardoNirenberg inequalities and applications to Navier-Stokes and generalized boson equations. 2011, arXiv: 1004.4287v3 |
| 16 | Kozono H , Ogawa T , Taniuchi Y . The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations. Math Z, 2002, 242: 251- 278 |
| 17 | Kozono H , Taniuchi Y . Limiting case of the Sobolev inequality in BMO, with application to the Euler equations. Comm Math Phys, 2000, 214: 191- 200 |
| 18 | Kato T , Ponce G . Commutator estimates and Euler and Navier-Stokes equations. Comm Pure Appl Math, 1988, 41: 891- 907 |
| 19 | Lifschitz A . Magnetohydro-dynamics and Spectral Theory, Developments in Electromagnetic Theory and Applications. Dordrecht: Kluwer Academic Publishers Group, 1989 |
| 20 | Lions P L , Masmoudi N . Uniqueness of mild solutions of the Navier-Stokes system in LN. Comm Partial Differential Equations, 2001, 26: 2211- 2226 |
| 21 | Lei Z , Zhou Y . BKM's criterion and global weak solutions for magnetohydrodynamics with zero viscosity. Discrete Contin Dyn Syst, 2009, 25: 575- 583 |
| 22 | Majda A J . Compressible Fluid Flow and Systems of Conservation Laws in Several Space Variables. New York: Springer-Verlag, 1984 |
| 23 | Miao C , Yuan B . On the well-posedness of the Cauchy problem for an MHD system in Besov spaces. Math Methods Appl Sci, 2009, 32 (1): 53- 76 |
| 24 | Ogawa T , Taniuchi Y . On blow-up criteria of smooth solutions to the 3-D Euler equations in a bounded domain. J Differential Equations, 2003, 190: 39- 63 |
| 25 | Prodi G . Un teorema di unicitá per le equazioni di Navier-Stokes[A uniqueness theorem for the NavierStokes equations]. Ann Mat Pura Appl, 1959, 48: 173- 182 |
| 26 | Politano H , Pouquet A , Sulem P L . Current and vorticity dynamics in three-dimensional magnetohydrodynamic turbulence. Phys Plasmas, 1995, 2: 2931- 2939 |
| 27 | Ren W . On the blow-up criterion for the 3D Boussinesq system with zero viscosity constant. Appl Anal, 2015, 94 (48): 56- 862 |
| 28 | Serrin J. The Initial Value Problem for the Navier-Stokes Equations//Langer R E. Proceedings of the Symposium on Nonlinear Problems. Madison: Univ of Wisconsin Press, 1963: 69-98 |
| 29 | Sermange M , Temam R . Some mathematical questions related to the MHD equations. Comm Pure Appl Math, 1983, 36 (5): 635- 664 |
| 30 | Shang Z . Osgood type blow-up criterion for the 3D Boussinesq equations with partial viscosity. AIMS Mathematics, 2018, 3 (1): 1- 11 |
| 31 | Wen H , Zhu C . Global solutions to the three-dimensional full compressible Navier-Stokes equations with vacuum at infinity in some classes of large data. SIAM J Math Anal, 49 (1): 162- 221 |
| 32 | Wu J . Bounds and new approaches for the 3D MHD equations. J Nonlinear Sci, 2002, 12: 395- 413 |
| 33 | Wu J . Regularity results for weak solutions of the 3D MHD equations. Discrete Contin Dynam Syst, 2004, 10: 543- 556 |
| 34 | Wu J . Regularity criteria for the generalized MHD equations. Commun Partial Differ Equa, 2008, 33 (2): 285- 306 |
| 35 | Wu J . Global regularity for a class of generalized magnetohydrodynamic equations. J Math Fluid Mech, 2011, 13 (2): 295- 305 |
| 36 | Xu X , Ye Z , Zhang Z . Remark on an improved regularity criterion for the 3D MHD equations. Appl Math Lett, 2015, 42: 41- 46 |
| 37 | Xu X , Ye Z . Note on global regularity of 3D generalized magnetohydrodynamicmodel with zero diffusivity. Commun Pure Appl Anal, 2015, 14 (2): 585- 595 |
| 38 | Ye Z . Global well-posedness and decay results to 3D generalized viscous magnetohydrodynamic equations. Ann Mat Pura Appl, 2016, 4 (4): 1111- 1121 |
| 39 | Ye Z , Xu X . Global regularity of 3D generalized incompressible magnetohydrodynamic model. Appl Math Lett, 2014, 35: 1- 6 |
| 40 | Ye Z , Xu X . Global regularity of the two-dimensional incompressible generalized magnetohydrodynamics system. Nonlinear Anal, 2014, 100: 86- 96 |
| 41 | Zhang Q . Refined blow-up criterion for the 3D magnetohydrodynamics equations. Appl Anal, 2013, 92 (12): 2590- 2599 |
| 42 | Zhou Y . Remarks on regularities for the 3D MHD equations. Discrete Contin Dynam Systems, 2005, 12: 881- 886 |
| 43 | Zhang Z , Liu X . On the blow-up criterion of smooth solutions to the 3D Idea lMHD equations. Acta Math Appl Sinica E, 2004, 20: 695- 700 |
| 44 | Zhang Z , Tang T , Liu L . An Osgood type regularity criterion for the liquid crystal flows. Nonlinear Differ Equa Appl, 2014, 21: 253- 262 |
| 45 | Zhang Z , Sadek G . Osgood type regularity criterion for the 3D Newton-Boussinesq equation. Electron J Dierential Equations, 2013, 223: 1- 6 |
| 46 | Zhang Z , Yang X . Navier-Stokes equations with vorticity in Besov spaces of negative regular indices. J Math Anal Appl, 2016, 440: 415- 419 |
| 47 | Zhang Z . A logarithmically improved regularity criterion for the 3D MHD system involving the velocity field in homogeneous Besov spaces. Ann Polon Math, 2016, 18 (1): 51- 57 |