| 1 | Abramowitz M , Stegun I A . Handbook of Mathematical Functions. Washington, DC: National Bureau of Standards, 1964 | | 2 | Polyanin A D , Manzhirov A V . Handbook of Integral Equations. Boca Raton, Fla: CRC Press, 1998 | | 3 | Asheim A , Huybrechs D . Local solutions to high frequency 2D scattering problems. J Comput Phys, 2009, 229: 5357- 5372 | | 4 | Rokhlin V . Rapid solution of integral equations of classical potential theory. J Comput Phys, 1985, 60: 187- 207 | | 5 | Greengard L , Rokhlin V . A fast algorithm for particle simulations. J Comput Phys, 1987, 73: 325- 348 | | 6 | Liu Y J . Fast Multipole Boundary Element Method:Theory and Applications in Engineering. Cambridge: Cambridge University Press, 2009 | | 7 | Hsiao B , Wendland W . Boundary Integral Equations. Berlin: Springer, 2008 | | 8 | Amini S , Profit A T J . Analysis of a diagonal form of the fast multipole algorithm for scattering theory. BIT Numer Math, 1999, 39: 585- 602 | | 9 | Colton D , Kress R . Integral Equation Methods in Scattering Theory. New York: Wiley, 1983 | | 10 | Arden S , Chandlerwilde S , Langdon S . A collocation method for high-frequency scattering by convex polygons. Journal of Computational and Applied Mathematics, 2007, 204: 334- 343 | | 11 | Wang H , Xiang S . Uniform approximations to Cauchy principal value integrals of oscillatory functions. Applied Mathematics and Computation, 2009, 215 (5): 1886- 1894 | | 12 | Iserles A , And?rsett S P N . On quadrature methods for highly oscillatory integrals and their implementation. BIT Numer Math, 2004, 44: 755- 772 | | 13 | Iserles A , And?rsett S P N . Efficient quadrature of highly oscillatory integrals using derivatives. Proc Royal Soc A, 2005, 461: 1383- 1399 | | 14 | Cheng H , Crutchfield W , Gimbutas Z , et al. Remarks on the implementation of the wideband FMM for the Helmholtz equation in two dimensions. Contemp Math Amer Math Soc, 2006, 408: 99- 110 | | 15 | Wu H J , Jiang W K , Liu Y J . Diagonal form fast multipole boundary element method for 2D acoustic problems based on Burton-Miller boundary integral equation formulation and its applications. Appl Math Mech, 2011, 32: 981- 996 | | 16 | Amini S , Profit A T J . Analysis of a diagonal form of the fast multipole algorithm for scattering theory. BIT Numer Math, 1999, 39: 585- 602 | | 17 | Dominguez V . Filon-Clenshaw-Curtis rules for a class of highly-oscillatory integrals with logarithmic singularities. Journal of Computational and Applied Mathematics, 2014, 261: 299- 319 | | 18 | Dominguez V , Graham I , Kim T . Filon-Clenshaw-Curtis rules for highly oscillatory integrals with algebraic singularities and stationary points. SIAM J Numer Anal, 2013, 51: 1542- 1566 | | 19 | Dominguez V , Graham I , Smyshlyaev V . Stability and error estimates for Filon-Clenshaw-Curtis rules for highly oscillatory integrals. IMA J Numer Anal, 2011, 31: 1253- 1280 | | 20 | Langdon S , Chandler-Wilde S N . A wavenumber independent boundary element method for an acoustic scattering problem. SIAM J Numer Anal, 2006, 43: 2450- 2477 | | 21 | Chandlerwilde S , Graham I , Langdon S . Numerical-asymptotic boundary integral methods in high-frequency acoustic scattering. Acta Numerica, 2012, 21: 89- 305 | | 22 | Levin D . Fast integration of rapidly oscillatory integrals. J Comp Appl Math, 1996, 67: 95- 101 | | 23 | Nédélec J C . Acoustic and Electromagnetic Equations. Berlin: Springer, 2001 | | 24 | Xiang S , Chen X , Wang H . Error bounds for approximation in Chebyshev points. Numer Math, 2010, 116: 463- 491 | | 25 | Xiang S , He G , Cho Y . On error bounds of Filon-Clenshaw-Curtis quadrature for highly oscillatory integrals. Advances in Computational Mathematics, 2014, 41: 573- 597 |
|